Skip to main content

Earthworm Innate Immune System

  • Chapter
  • First Online:
Biology of Earthworms

Part of the book series: Soil Biology ((SOILBIOL,volume 24))

Abstract

Nonself recognition is the basis of innate and adaptive immune responses and it depends on immune receptors. Caenorhabditis elegans and Drosophila animal models have added ample information to define molecular homology especially at the level of signal transduction. Yet, it is unwise to generalize about the immune system/signaling mechanisms of all invertebrates based upon two species. Other invertebrate species (mollusks and annelids) have also evolved effective innate immune responses, although those might have more unique pathways than other more popular and better studied species. We analyzed cellular immune responses in earthworms, and began to identify conserved signal molecules relative to MAP kinase pathways. These pathways appear at every level of evolution suggesting ubiquitous roles in various biological processes (differentiation, adaptation, stress response, apoptosis) including immunity. Analysis of seemingly less complex invertebrate immune systems can provide useful information with putative applications to more complex vertebrate immune system and to the evolution of immune response, including regulation of signaling systems in innate immunity. This knowledge can also help to identify and characterize new bioactive molecules with possible therapeutic use both in human and veterinary medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling pathway in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Beck G, Habicht GS (1991a) Purification and biochemical characterization of an invertebrate interleukin 1. Mol Immunol 28:577–584

    Article  CAS  PubMed  Google Scholar 

  • Beck G, Habicht GS (1991b) Primitive cytokines: harbingers of vertebrate defense. Immunol Today 12:180–183

    Article  CAS  PubMed  Google Scholar 

  • Beschin A, Bilej M, Hanssens F, Raymakers J, Van Dyck E, Revets H, Brys L, Gomez J, DeBaetselier P, Timmermans M (1998) Identification and cloning of a glucan and lipopolysaccharide-binding protein from Eisenia foetida earthworm involved in the activation of prophenoloxidase cascade. J Biol Chem 273:24948–24954

    Article  CAS  PubMed  Google Scholar 

  • Beschin A, Bilej M, Brys L, Torreele E, Lucas R, Magez S, De Baetselier P (1999) Convergent evolution of cytokines. Nature 400:627–628

    Article  CAS  PubMed  Google Scholar 

  • Bilej M, Sima P, Slipka J (1992) Repeated antigen challenge induces earthworm coelomocyte proliferation. Immunol Lett 32:181–184

    Article  CAS  PubMed  Google Scholar 

  • Bilej M, Brys L, Beschin A, Lucas R, Vercauteren E, Hanušová R, De Baetselier P (1995) Identification of a cytolytic protein in the coelomic fluid of Eisenia foetida earthworms. Immunol Lett 45:123–128

    Article  CAS  PubMed  Google Scholar 

  • Bilej M, Rossmann P, Šinkora M, Hanušová R, Beschin A, Raes G, De Baetselier P (1998) Cellular expression of the cytolytic factor in earthworms Eisenia foetida. Immun Lett 60:23–29

    Article  CAS  Google Scholar 

  • Bilej M, De Baetselier P, Beschin A (2000) Antimicrobial defense of earthworm. Folia Microbiol 45:283–300

    Article  CAS  Google Scholar 

  • Bilej M, De Baetselier P, Van Dijck E, Stijlemans B, Colige A, Beschin A (2001) Distinct carbohydrate recognition domains of an invertebrate defense molecule recognize gram negative and gram-positive bacteria. J Biol Chem 276:45840–45847

    Article  CAS  PubMed  Google Scholar 

  • Cancio I, Ap Gwynn I, Ireland PM, Cajaraville MP (1995) Lysosomal origin of the chloragosomes in the chloragogenous tissue of the earthworm Eisenia foetida: cytochemical demonstration of acid phosphatase activity. Histochem J 27:591–596

    CAS  PubMed  Google Scholar 

  • Canesi L, Betti M, Ciacci C, Scarpato A, Citterio B, Pruzzo C, Gallo G (2002) Signalling pathways involved in the physiological response of mussel haemocytes to bacterial challenge: the role of stress-activated p38 MAP kinases. Dev Comp Immunol 26:325–334

    Article  CAS  PubMed  Google Scholar 

  • Caruso A, Licenziati S, Corulli M, Canaris AFD, de Francesco MA, Fiorentini S, Peroni L, Fallacara F, Balsari A, Turano A (1997) Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation. Cytometry 27:71–76

    Article  CAS  PubMed  Google Scholar 

  • Clatworthy AL (1996) A simple systems approach to neuralimmune communication. Comp Biochem Physiol 115A:1–10

    Article  CAS  Google Scholar 

  • Cooper EL (1968) Transplantation immunity in annelids – I. Rejection of xenografts exchanged between Lumbricus terrestris and Eisenia foetida. Transplantation 6:322–337

    Article  CAS  PubMed  Google Scholar 

  • Cooper EL (1969) Chronic allograft rejection in Lumbricus terrestris. J Exp Zool 171:69–73

    Article  CAS  PubMed  Google Scholar 

  • Cooper EL (1996) Earthworm immunity. Prog Mol Subcell Biol 16:10–45

    Google Scholar 

  • Cooper EL (2008) From Darwin to Metchnikow to Burnet and beyond. Contrib Microbiol 15:1–11

    Article  CAS  PubMed  Google Scholar 

  • Cooper EL, Stein EA (1981) Oligochaetas. In: Ratcliffe RA, Rowley AF (eds) Invertebrate blood cells. Academic, San Diego, pp 75–140

    Google Scholar 

  • Cooper EL, Cossarizza A, Kauschke E, Franceschi C (1999) Cell adhesion and the immune system: a case study using earthworms. Microsc Res Technol 44:237–253

    Article  CAS  Google Scholar 

  • Cooper EL, Kauschke E, Cossarizza A (2002) Digging for innate immunity since Darwin and Metchnikoff. BioEssays 24:319–333

    Article  CAS  PubMed  Google Scholar 

  • Cossarizza A, Cooper EL, Suzuki MM, Salvioli S, Capri M, Gri G, Quaglino D, Franceschi C (1996) Earthworm leukocytes that are not phagocytic and cross-react with several human epitopes can kill human tumor cell lines. Exp Cell Res 224:174–182

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Davis RJ, Flavell RA (2002) MAP kinases in the immune response. Annu Rev Immunol 20:55–72

    Article  CAS  PubMed  Google Scholar 

  • Dyrynda EA, Pipe RK, Ratcliffe NA (1997) Sub-populations of haemocytes in the adult and developing marine mussel, Mytilus edulis, identified by use of monoclonal antibodies. Cell Tissue Res 289:527–536

    Article  CAS  PubMed  Google Scholar 

  • Engelmann P, Pal J, Berki T, Cooper EL, Németh P (2002) Earthworm leukocytes react with different mammalian specific monoclonal antibodies. Zoology 105:257–265

    Article  CAS  PubMed  Google Scholar 

  • Engelmann P, Molnar L, Pálinkás L, Cooper EL, Németh P (2004) Earthworm leukocyte populations specifically harbor lysosomal enzymes that may respond to bacterial challenge. Cell Tissue Res 316:391–401

    Article  CAS  PubMed  Google Scholar 

  • Engelmann P, Pálinkás L, Cooper EL, Németh P (2005a) Monoclonal antibodies identify four distinct annelid leukocyte markers. Dev Comp Immunol 29:599–614

    Article  CAS  PubMed  Google Scholar 

  • Engelmann P, Cooper EL, Nemeth P (2005b) Anticipating innate immunity without a Toll. Mol Immunol 42:931–942

    Article  CAS  PubMed  Google Scholar 

  • Fischer E (1993) The myelo-erythroid nature of the chloragogenous-like tissues of the annelids. Comp Biochem Physiol 106A:449–453

    Article  Google Scholar 

  • Fischer E, Lovas M, Nemeth P (1975) Zinkporphyrin-pigmente im botryoidgewebe von Haemopis sanguisuga L. und ihre mit der diaminobenzidin-H2O2 Reaktion. Acta Histochem 55:32–41

    Google Scholar 

  • Fischer E, Lovas M, Nemeth P (1976) An experimental analysis of the vasofibrous tissue in the leech Haemopis sanguisuga L. Zool Anz 197:289–299

    Google Scholar 

  • Friedman A, Perrimon N (2006) A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signaling. Nature 444:230–234

    Article  CAS  PubMed  Google Scholar 

  • Gaitanaki C, Kefaloyianni E, Marmari A, Beis I (2004) Various stressors rapidly activate the p38-MAP kinase pathway in Mytilus galloprovincialis (Lam.). Mol Cell Biochem 260:119–127

    Article  CAS  PubMed  Google Scholar 

  • Gardiner EM, Strand MR (1999) Monoclonal antibodies bind distinct classes of hemocytes in the moth Pseudoplusia includens. J Insect Physiol 45:113–126

    Article  CAS  PubMed  Google Scholar 

  • Gonsalves FC, Weisblat DA (2007) MAPK regulates of maternal and zygotal Notch transcript stability in early development. Proc Natl Acad Sci U S A 104:531–536

    Article  CAS  PubMed  Google Scholar 

  • Hamed SS, Kauschke E, Cooper EL (2002) Cytochemical properties of earthworm coelomocytes enriched by Percoll. In: Cooper EL, Beschin A, Bilej M (eds) A new model for analyzing antimicrobial peptides with biomedical applications. NATO Science Series: life and behavioral sciences, vol 343. IOS, Amsterdam, pp 29–37

    Google Scholar 

  • Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808–811

    Article  CAS  PubMed  Google Scholar 

  • Hanušová R, Bilej M, Brys L, De-Baetselier P, Beschin A (1999) Identification of a coelomic mitogenic factor in Eisenia foetida earthworm. Immun Lett 65:203–211

    Article  Google Scholar 

  • Hirigoyenberry F, Lassalle F, Lassegues M (1990) Antibacterial activity of Eisenia fetida andrei coelomic fluid: transcription and translation regulation of lysozyme and proteins evidenced after bacterial infestation. Comp Biochem Physiol 95B:71–75

    CAS  Google Scholar 

  • Hoffmann JA (1995) Innate immunity of insects. Curr Opin Immunol 7:4–10

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann JA, Reichhart JM (1997) Drosophila immunity. Trends Cell Biol 7:309–316

    Article  CAS  Google Scholar 

  • Homa J, Bzowska M, Klimek M, Plytycz B (2008) Flow cytometric quantification of proliferating coelomocytes non-invasively retrieved from Dendrobena veneta. Dev Comp Immunol 32:9–14

    Article  PubMed  Google Scholar 

  • Hostetter RK, Cooper EL (1972) Coelomocytes as effector cells in earthworm immunity. Immunol Commun 1:155–183

    CAS  PubMed  Google Scholar 

  • Hughes KT, Smith EM, Chin R, Cadet R, Sinisterra J, Leung MK, Shipp MA, Scharrer B, Stefano GB (1990) Interaction of immunoactive monokines (interleukin 1 and tumor necrosis factor) in the bivalve mollusc Mytilus edulis. Proc Natl Acad Sci U S A 87:4426–4429

    Article  CAS  PubMed  Google Scholar 

  • Josková R, Silerová M, Procházková P, Bilej M (2009) Identification and cloning of invertebrate-type lysozyme from Eisenia andrei. Dev Comp Immunol 33:932–938

    Article  PubMed  Google Scholar 

  • Kauschke E, Mohrig W (1987) Comparative analysis of hemolytic and hemagglutinating activities in coelomic fluid of Eisenia fetida and Lumbricus terrestris (Annelida, Lumbricidae). Dev Comp Immunol 11:331–341

    Article  CAS  PubMed  Google Scholar 

  • Kauschke E, Komiyama K, Moro I, Eue I, König S, Cooper EL (2001) Evidence for perforin-like activity associated with earthworm leukocytes. Zoology 32:13–24

    Article  Google Scholar 

  • Köhlerová P, Beschin A, Šileróvá M, De Baetselier P, Bilej M (2004) Effect of experimental microbial challenge on the expression of defense molecules in Eisenia foetida earthworms. Dev Comp Immunol 28:701–711

    Article  PubMed  Google Scholar 

  • Koumans-van Diepen J, Egberts E, Peixoto BR, Taverne N, Rombout JH (1995) B cell and immunoglobulin heterogeneity in carp (Cyprinus carpio L); an immuno(cyto)chemical study. Dev Comp Immunol 19:97–108

    Article  CAS  PubMed  Google Scholar 

  • Kurucz E, Zettervall CJ, Sinka R, Vilmos P, Pivarcsi A, Ekengren S, Hegedus Z, Ando I, Hultmark D (2003) Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila. Proc Natl Acad Sci U S A 100:2622–2627

    Article  CAS  PubMed  Google Scholar 

  • Kurz CL, Tan M (2004) Regulation of aging and innate immunity in C. elegans. Aging Cell 3:185–193

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen activated protein kinases signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    CAS  PubMed  Google Scholar 

  • Lacchini AH, Davies AJ, Mackintosh D, Walker AJ (2006) Beta-1,3-glucan modulates PKC signaling in Lymnea stagnalis defence cells: a role for PKC in H2O2 production and down-stream ERK activation. J Exp Biol 209:4829–4840

    Article  CAS  PubMed  Google Scholar 

  • Lamprou I, Tsakas SGL, Theodorou Karakantza M, Lampropoulou M, Marmaras VJ (2005) Uptake of LPS/E. coli/ latex beads via different signaling pathways in medfly haemocytes: the role of MAP kinases activation and protein secretion. Biochim Biophys Acta 1744:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lamprou I, Mamali I, Dallas K, Fertakis V, Lampropoulou M, Marmaras VJ (2007) Distinct signaling pathways promote phagocytosis of bacteria, latex beads and lipopolysaccharide in medfly haemocytes. Immunology 121:314–327

    Article  CAS  PubMed  Google Scholar 

  • Larade K, Storey KB (2006) Analysis of signal transduction pathways during anoxia exposure in a marine snail: a role of MAP kinase and downstream signaling effects. Comp Biochem Physiol B 143:85–91

    Article  PubMed  Google Scholar 

  • Lassegues M, Milochau A, Doignon F, Du Pasquier L, Valembois P (1997) Sequence and expression of an Eisenia fetida-derived cDNA clone that encodes the 40 kDa fetidin antibacterial protein. Eur J Biochem 246:756–762

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  CAS  PubMed  Google Scholar 

  • Lemmi CAE, Cooper EL (1981) Induction of coelomocyte proliferation by xenografts in the earthworm Lumbricus terrestris. Dev Comp Immunol 5:73–80

    Article  Google Scholar 

  • Liebmann E (1942) The coelomocytes of Lumbricidae. J Morph 71:221–249

    Article  Google Scholar 

  • Linthicum DS, Marks DH, Stein EA, Cooper EL (1977) Graft rejection in earthworms: an electron microscopic study. Eur J Immunol 7:871–876

    Article  CAS  PubMed  Google Scholar 

  • Mansour MH, Cooper EL (1984) Serological and partial molecular characterization of Thy-1 homolog in tunicates. Eur J Immunol 14:1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Mansour MH, DeLange R, Cooper EL (1985) Isolation, purification and amino acid composition of the tunicate haemocytes. Thy-1 homolog. J Biol Chem 260:2681–2686

    CAS  PubMed  Google Scholar 

  • Marks DH, Stein EA, Cooper EL (1981) Acid phosphatase changes associated with response to foreign tissue in the earthworm Lumbricus terrestris. Comp Biochem Physiol 68A:681–683

    Article  CAS  Google Scholar 

  • Metchnikoff E (1891) Lectures on comparative pathology of inflammation (Starling EH 1968). Dover, New York, pp 67–73

    Google Scholar 

  • Müller WEG, Blumbach B, Müller I (1999) Evolution of the innate and adaptive immune systems: relationships between potential immune molecules in the lowest metazoan phylum (Porifera) and those in vertebrates. Transplantation 68:1215–1227

    Article  PubMed  Google Scholar 

  • Müller WEG, Böhm M, Grebenjuk VA, Skorokhod A, Müller IM, Gamulin V (2002) Conservation of the positions of metazoan introns from sponges to humans. Gene 295:299–309

    Article  PubMed  Google Scholar 

  • Nahas N, Molski TF, Fernandez GA, Sha’afi RI (1996) Tyrosine phosphorylation and activation of new mitogen activated protein (MAP)-kinase cascade in human neutrophils stimulated with various agonists. Biochem J 318:247–253

    CAS  PubMed  Google Scholar 

  • Negm HI, Mansour MH, Cooper EL (1991) Identification and structural characterization of an LYT 2/3 homolog in tunicates. Comp Biochem Physiol 101B:55–67

    Google Scholar 

  • Ottaviani E, Franceschi C (1997) The invertebrate phagocytic immunocyte: clues to a common evolution of immune and neuroendocrine systems. Immunol Today 18:169–174

    Article  CAS  PubMed  Google Scholar 

  • Ottaviani E, Franchini A, Franceschi C (1993) Presence of several cytokine-like molecules in molluscan hemocytes. Biochem Biophys Res Commun 195:984–988

    Article  CAS  PubMed  Google Scholar 

  • Parrinello N, Vizzini A, Arizza V, Salerno G, Parrinello D, Cammarata M, Giaramita FT, Vazzana M (2008) Enhanced expression of a cloned and sequenced Ciona intestinalis TNFalpha-like (CiTNF alpha) gene during the LPS-induced inflammatory response. Cell Tissue Res 334:305–317

    Article  CAS  PubMed  Google Scholar 

  • Pech LL, Strand MR (1996) Granular cells are required for encapsulation of foreign targets by insect haemocytes. J Cell Sci 109:2053–2060

    CAS  PubMed  Google Scholar 

  • Pipe RK, Farley SR, Coles JA (1997) The separation and characterization of haemocytes from the mussel Mytilus edulis. Cell Tissue Res 289:537–545

    Article  CAS  PubMed  Google Scholar 

  • Porchet-Henneré E (1990) Cooperation between different coelomocyte populations during the encapsulation response of Nereis diversicolor, demonstrated using monoclonal antibodies. J Invertebr Pathol 56:353–361

    Article  Google Scholar 

  • Porchet-Henneré E, Vernet G (1992) Cellular immunity in an annelid (Nereis diversicolor, Polychaeta): production of melanin by a subpopulation of granulocytes. Cell Tissue Res 269:167–174

    Article  PubMed  Google Scholar 

  • Reinisch CL, Charles AM, Troutner J (1983) Unique antigens on neoplastic cells of the soft shell clam Mya arenaria. Dev Comp Immunol 7:33–39

    Article  CAS  PubMed  Google Scholar 

  • Roch P, Valembois P (1978) Evidence for concanavalin A-receptors and their redistribution on lumbricid leukocytes. Dev Comp Immunol 2:51–64

    Article  CAS  PubMed  Google Scholar 

  • Roch P, Cooper EL, Eskinazi DP (1983) Serological evidences for a membrane structure related to human β2-microglobulin expressed by certain earthworm leukocytes. Eur J Immunol 13:1037–1042

    Article  CAS  PubMed  Google Scholar 

  • Salojin K, Oravecz T (2007) Regulation of innate immunity by MAPK dual-specificity phosphatases: knockout models reveal new tricks of old genes. J Leukoc Biol 8:860–869

    Article  Google Scholar 

  • Salzet M (2002) Antimicrobial peptides are signaling molecules. Trends Immunol 23:283–284

    Article  CAS  PubMed  Google Scholar 

  • Shalev A, Greenberg AH, Lögdberg L, Björck L (1981) β2-microglobulin-like in low vertebrates and invertebrates. J Immunol 127:1186–1191

    CAS  PubMed  Google Scholar 

  • Shalev A, Pla M, Ginsburger-Vogel T, Echalier G, Lögdberg L, Björck L, Colombani J, Segal S (1983) Evidence for β2 microglobulin and H-2-like antigenic determinants in Drosophila. J Immunol 130:297–302

    CAS  PubMed  Google Scholar 

  • Steinmetz PR, Zelada-Gonazales F, Burgtdorf C, Wittbrodt J, Arendt D (2007) Polychaete trunk neuroectoderm converges and extends by mediolateral cell intercalation. Proc Natl Acad Sci U S A 104:2727–2732

    Article  CAS  PubMed  Google Scholar 

  • Strand MR, Johnson JA (1996) Characterization of monoclonal antibodies to hemocytes of Pseudoplusia includens. J Insect Physiol 42:21–31

    Article  CAS  Google Scholar 

  • Stubberud HE, Hønsi TG, Stenersen J (2000) Purification and partial characterisation of tentatively classified acid phosphatase from the earthworm Eisenia veneta. Comp Biochem Physiol 126B:487–494

    CAS  Google Scholar 

  • Takahashi T, Iwase T, Takenouchi N, Saito M, Kobayashi K, Moldoveanu Z, Mestecky J, Moro I (1996) The joining (J) chain is present in invertebrates that do not express immunoglobulins. Proc Natl Acad Sci U S A 93:1886–1891

    Article  CAS  PubMed  Google Scholar 

  • Toupin J, Lamoureux G (1976) Coelomocytes of the earthworm: the T-cell-like rosette. Cell Immunol 26:127–132

    Article  CAS  PubMed  Google Scholar 

  • Troemel ER, Chu SW, Reinke V, Lee SS, Ausubel FM, Kim DH (2006) p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2:e183

    Article  PubMed  Google Scholar 

  • Tuckova L, Rejnek J, Sima P (1988) Response to parenteral stimulations in earthworms L. terrestris and E. foetida. Dev Comp Immunol 12:287–296

    Article  CAS  PubMed  Google Scholar 

  • Valembois P (1971) Etude ultrastructurale des coelomocytes du lombricien Eisenia fetida (Sav). Bull Soc Zool Fr 96:59–72

    Google Scholar 

  • Valembois P, Roch Ph (1977) Identification par autoradiographie des leucocytes stimulés à la suite de plaies ou de greffes chez un ver de terre. Biol Cell 28:82–82

    Google Scholar 

  • Valembois P, Lasségues M, Roch P, Vaillier J (1985) Scanning electron-microscopic study of the involvement of coelomic cells in earthworm antibacterial defense. Cell Tissue Res 240:479–484

    Article  Google Scholar 

  • Valembois P, Seymour J, Lassègues M (1994) Evidence of lipofuscin and melanin in the brown body of the earthworm Eisenia fetida andrei. Cell Tissue Res 277:183–188

    Article  CAS  Google Scholar 

  • Van de Braak CBT, Botterblom MHA, Taverne N, Van der Knaap WPW, Rombout JH (2001) Monoclonal antibodies against haemocyte molecules of Penaeus monodon shrimp react with haemolymph components of other crustaceans and disparate taxa. Dev Comp Immunol 25:279–283

    Article  PubMed  Google Scholar 

  • Willott E, Trenczek T, Thrower LW, Kanost MR (1994) Immunochemical identification of insect hemocyte populations: monoclonal antibodies distinguish four major haemocyte types in Manduca sexta. Eur J Cell Biol 65:417–423

    CAS  PubMed  Google Scholar 

  • Willott E, Lowenberger C, Christensen BM, Kanost MR (1995) Monoclonal antibodies against Manduca sexta haemocytes bind Aedes aegypti hemocytes: characterization of six monoclonal antibodies that bind hemocytes from both species. Dev Comp Immunol 19:451–461

    Article  CAS  PubMed  Google Scholar 

  • Yoshino TP, Granath WO (1983) Identification of antigenically distinct hemocyte subpopulations in Biomphalaria glabrata (Gastropoda) using monoclonal antibodies to surface membrane markers. Cell Tissue Res 232:553–564

    Article  CAS  PubMed  Google Scholar 

  • You MK, Oh SI, Ok SH, Cho SK, Shin HY, Jeung JU, Shin JS (2007) Identification of putative MAPK kinases in Oryza minuta and O. sativa responsive to biotic stresses. Mol Cell 23:108–114

    CAS  Google Scholar 

  • Zelck UE, Gege BE, Schmid S (2007) Specific inhibitors of mitogen activated protein kinase and PI3-K pathways impair immune responses by hemocytes of trematode intermediate host snails. Dev Comp Immunol 31:321–331

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Jiang J, Jiang S, Ma J, Su T, Qiu L, Zhu C, Xu X (2009) Molecular characterization and expression analysis of a putative LPS-induced TNF-alpha factor (LITAF) from pearl oyster Pinctada fucata. Fish Shellfish Immunol 27:391–396

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Engelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Engelmann, P., Cooper, E.L., Opper, B., Németh, P. (2011). Earthworm Innate Immune System. In: Karaca, A. (eds) Biology of Earthworms. Soil Biology, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14636-7_14

Download citation

Publish with us

Policies and ethics