Skip to main content

Soil Phage Ecology: Abundance, Distribution, and Interactions with Bacterial Hosts

  • Chapter
  • First Online:
Biocommunication in Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 23))

Abstract

The development of appropriate methods specific to the study of viruses in soils has enabled us to take the first steps toward establishing the roles of viruses in soil ecosystems. Viruses are incredibly abundant in most soils, with numbers reaching as high as 1010 per gram dry weight. This astounding abundance is likely due to a combination of virus production and storage of viruses over time, and determination of the relative contribution of these two processes to soil viral abundance is a ripe topic for research. While soil viruses are poorly represented among metagenome projects, available data suggest that the genetic diversity of soil viral assemblages may exceed that of marine assemblages. Through infection and lysis, soil viruses exert significant control over host-mediated activities and likely contribute to host evolution in the soil environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST (2009) Disambiguating bacteriophage pseudolysogeny: an historical analysis of lysogeny, pseudolysogeny, and the phage carrier state. In: Adams HT (ed) Contemporary trends in bacteriophage research. Nova Publishers, Hauppage, New York, pp 285–307

    Google Scholar 

  • Ackermann HW (2001) Frequency of morphological phage descriptions in the year 2000. Arch Virol 146:843–857

    CAS  PubMed  Google Scholar 

  • Allen B, Willner D, Oechel WC, Lipson D (2010) Top-down control of microbial activity and biomass in an Arctic soil ecosystem. Environ Microbiol 12:642–648

    CAS  PubMed  Google Scholar 

  • Andrews JH (1991) Comparative ecology of microorganisms and macroorganisms. Springer-Verlag, New York

    Google Scholar 

  • Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F (2006) The marine viromes of four oceanic regions. PLoS Biol 4:2121–2131

    CAS  Google Scholar 

  • Ashelford KE, Day MJ, Bailey MJ, Lilley AK, Fry JC (1999a) In situ population dynamics of bacterial viruses in a terrestrial environment. Appl Environ Microbiol 65:169–174

    CAS  PubMed  Google Scholar 

  • Ashelford KE, Day MJ, Fry JC (2003) Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 69:285–289

    CAS  PubMed  Google Scholar 

  • Ashelford KE, Fry JC, Bailey MJ, Jeffries AR, Day MJ (1999b) Characterization of six bacteriophages of serratia liquefaciens CP6 isolated from the sugar beet phytosphere. Appl Environ Microbiol 65:1959–1965

    CAS  PubMed  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Google Scholar 

  • Barksdale L, Arden SB (1974) Persisting bacteriophage infections, lysogeny, and phage conversions. Annu Rev Microbiol 28:265–299

    CAS  PubMed  Google Scholar 

  • Barondess JJ, Beckwith J (1995) Bor gene of phage-lambda, involved in serum resistance, encodes a widely conserved outer-membrane lipoprotein. J Bacteriol 177:1247–1253

    CAS  PubMed  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2002) Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145

    Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192

    CAS  Google Scholar 

  • Beijerinck MJ (1898) Concerning a contagium vivum fluidum as cause of the spot disease of tobacco leaves. Verhandelingen der Koninkyke akademie Wettenschappen te Amsterdam 65:3–21

    Google Scholar 

  • Bergh O, Borsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature (London) 340:467–468

    CAS  Google Scholar 

  • Bertani G (2004) Lysogeny at mid-twentieth century: P1, P2, and other experimental, systems. J Bacteriol 186:595–600

    CAS  PubMed  Google Scholar 

  • Beumer A, Robinson JB (2005) A broad-host-range, generalized transducing phage (SN-T) acquires 16S rRNA genes from different genera of bacteria. Appl Environ Microbiol 71:8301–8304

    CAS  PubMed  Google Scholar 

  • Bisnieks M, Kvarnheden A, Sigvald R, Valkonen JPT (2004) Molecular diversity of the coat protein-encoding region of Barley yellow dwarf virus-PAV and Barley yellow dwarf virus-MAV from Latvia and Sweden. Arch Virol 149:843–853

    CAS  PubMed  Google Scholar 

  • Borsheim KY, Bratbak G, Heldal M (1990) Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl Environ Microbiol 56:352–356

    CAS  PubMed  Google Scholar 

  • Boumans R, Costanza R, Farley J, Wilson MA, Portela R, Rotmans J, Villa F, Grasso M (2002) Modeling the dynamics of the integrated earth system and the value of global ecosystem services using the GUMBO model. Ecol Econ 41:529–560

    Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Google Scholar 

  • Bratbak G, Heldal M (2000) Viruses rule the waves: the smallest and most abundant members of marine ecosystems. Microbiol Today 27:171–173

    Google Scholar 

  • Bratbak G, Thingstad F, Heldal M (1994) Viruses and the microbial loop. Microb Ecol 28:209–221

    Google Scholar 

  • Breitbart M, Miyake JH, Rohwer F (2004) Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol. Lett. 236(2): 249–256

    Google Scholar 

  • Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F (2002) Genomic analysis of uncultured marine viral communities. Proc Nat Acad Sci USA 99:14250–14255

    CAS  PubMed  Google Scholar 

  • Campbell A (2006) General aspects of lysogeny. In: Calendar R (ed) The bacteriophages. Oxford University Press, New York, pp 66–73

    Google Scholar 

  • Christian PD, Richards AR, Williams T (2006) Differential adsorption of occluded and nonoccluded insect-pathogenic viruses to soil-forming minerals. Appl Environ Microbiol 72:4648–4652

    CAS  PubMed  Google Scholar 

  • Creager ANH, Scholthof KG, Citovsky V, Scholthof HB (1999) Tobacco mosaic virus: pioneering research for a century. Plant Cell 11:301–308

    CAS  PubMed  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10494–10499

    CAS  PubMed  Google Scholar 

  • Deb C, Chakraborty R, Ghosh AN, Mandal NC, Mukherjee T, Roy P (2003) A generalized transducing thiophage (TPC-1) of a facultative sulfur chemolithotrophic bacterium, Bosea thiooxidans CT5, of alpha-Proteobacteria, isolated from Indian soil. FEMS Microbiol Lett 227:87–92

    CAS  PubMed  Google Scholar 

  • Delogu G, Faccini N, Alberici R, Gianinetti A, Stanca AM (2003) Soil-borne viruses of barley seriously affect plant growth and grain yield in a monocropping system. Cereal Res Commun 31:137–144

    Google Scholar 

  • Demolon A, Dunez A (1935) Recherchhes sur la role du bacteriophage dans la fatigue des luzerniers. Ann Agron 5:89–111

    Google Scholar 

  • Desiere F, Lucchini S, Canchaya C, Ventura M, Brussow H (2002) Comparative genomics of phages and prophages in lactic acid bacteria. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 82:73–91

    CAS  Google Scholar 

  • Duboise S, Moore BE, Sorber CA, Sagik BP (1979) Viruses in soil systems. CRC Crit Rev Microbiol 7:245–285

    CAS  PubMed  Google Scholar 

  • Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066

    CAS  PubMed  Google Scholar 

  • Fillhart RC, Bachand GD, Castello JD (1998) Detection of infectious tobamoviruses in forest soils. Appl Environ Microbiol 64:1430–1435

    CAS  PubMed  Google Scholar 

  • Fray RG (2002) Altering plant-microbe interaction through artificially manipulating bacterial quorum sensing. Ann Bot 89:245–253

    CAS  PubMed  Google Scholar 

  • Fuhrman J (1992) Bacterioplankton roles in cycling of organic matter: the microbial food web. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, pp 361–383

    Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    CAS  PubMed  Google Scholar 

  • Fujii T, Nakayama N, Nishida M, Sekiya H, Kato N, Asakawa S, Kimura M (2008) Novel capsid genes (g23) of T4-type bacteriophages in a Japanese paddy field. Soil Biol Biochem 40:1049–1058

    CAS  Google Scholar 

  • Fuxa JR (2004) Ecology of insect nucleopolyhedroviruses. Agric Ecosyst Environ 103:27–43

    Google Scholar 

  • Garbeva P, van Elsas JD, van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32

    CAS  Google Scholar 

  • Gerba CP (1984) Applied and theoretical aspects of virus adsorption to surfaces. Adv Appl Microbiol 30:133–168

    CAS  PubMed  Google Scholar 

  • Ghosh D, Roy K, Williamson KE, White DC, Wommack KE, Sublette KL, Radosevich M (2008) Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA. Appl Environ Microbiol 74:495–502

    CAS  PubMed  Google Scholar 

  • Gomes NCM, Heuer H, Schonfeld J, Costa R, Mendonca-Hagler L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232:167–180

    CAS  Google Scholar 

  • Govan JRW, Vandamme P (1998) Agricultural and medical microbiology: a time for bridging gaps. Microbiology 144:2373–2375

    CAS  PubMed  Google Scholar 

  • Grijns A (1927) Clover-plants in sterile cultivation do not produce a bacteriophage od B. radicicola. Zentr Bakt Parasitenk Infek 2:248–251

    Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2007) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. 2nd International conference on rhizosphere, Springer, Montpellier, France, 2007, pp 7–14

    Google Scholar 

  • Hashem FM, Angle JS (1990) Rhizobiophage effects on nodulation, nitrogen-fixation, and yield of field-grown soybeans (Glycine-Max L Merr). Biol Fertil Soils 9:330–334

    Google Scholar 

  • Heldal M, Bratbak G (1991) Production and decay of viruses in aquatic environments. Mar Ecol Prog Ser 72:205–212

    Google Scholar 

  • Helton RR, Wommack KE (2009) Seasonal dynamics and metagenomic characterization of estuarine viriobenthos assemblages by randomly amplified polymorphic DNA PCR. Appl Environ Microbiol 75:2259–2265

    CAS  PubMed  Google Scholar 

  • Hillel D (1998) Environmental soil physics. Harcourt Brace and Company, San Diego

    Google Scholar 

  • Iwanowski D (1892) Concerning the mosaic disease of the tobacco plant. St Petersburg Acad Imperial Sci Bull 35:67–70

    Google Scholar 

  • Jin Y, Flury M (2002) Fate and transport of viruses in porous media. Adv Agron 77:39–51

    Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    CAS  Google Scholar 

  • Keel C, Ucurum Z, Michaux P, Adrian M, Haas D (2002) Deleterious impact of a virulent bacteriophage on survival and biocontrol activity of Pseudomonas fluorescens strain CHA0 in natural soil. Mol Plant Microbe Interact 15:567–576

    CAS  PubMed  Google Scholar 

  • Kemp PF, Aller JY (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47:161–177

    CAS  PubMed  Google Scholar 

  • Kleczkowska J (1971) Genetic changes in rhizobium bacteria and in their bacteriophages during coexistence. Plant Soil 35(1):47:–56

    Google Scholar 

  • Klieve AV, Swain RA (1993) Estimation of ruminal bacteriophage numbers by pulsed-field gel electrophoresis and laser densitometry. Appl Environ Microbiol 59:2299–2303

    CAS  PubMed  Google Scholar 

  • Langley R, Kenna DT, Vandamme P, Ure R, Govan JRW (2003) Lysogeny and bacteriophage host range within the Burkholderia cepacia complex. J Med Microbiol 52:483–490

    PubMed  Google Scholar 

  • Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras JM, Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61:1004–1012

    CAS  PubMed  Google Scholar 

  • Levy SB, Miller RV (1989) Gene transfer in aquatic environments. McGraw-Hill, New York

    Google Scholar 

  • Li WKW, Dickie PM (2001) Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry 44:236–246

    CAS  PubMed  Google Scholar 

  • Liles MR, Williamson LL, Rodbumrer J, Torsvik V, Goodman RM, Handelsman J (2008) Recovery, purification, and cloning of high-molecular-weight DNA from soil microorganisms. Appl Environ Microbiol 74:3302–3305

    CAS  PubMed  Google Scholar 

  • Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA 101:11013–11018

    CAS  PubMed  Google Scholar 

  • Lipson SM, Stotzky G (1986) Effect of kaolinite on the specific infectivity of reovirus. FEMS Microbiol Lett 37:83–88

    CAS  Google Scholar 

  • Loveland JP, Ryan JN, Amy GL, Harvey RW (1996) The reversibility of virus atachment to mineral surfaces. Colloid Surf A 107:205–221

    CAS  Google Scholar 

  • Madan NJ, Marshall WA, Laybourn-Parry J (2005) Virus and microbial loop dynamics over an annual cycle in three contrasting Antarctic lakes. Freshw Biol 50:1291–1300

    Google Scholar 

  • Maiques E, Ubeda C, Campoy S, Salvador N, Lasa I, Novick RP, Barbe J, Penades JR (2006) Beta-lactam antibiotics induce the SOS response and horizontal gene transfer of virulence factors in Staphylococcus aureus. J Bacteriol 188:2726–2729

    CAS  PubMed  Google Scholar 

  • Majtan V, Majtanova L (1997) Postantibiotic effects and postantibiotic sub-MIC effects of ciprofloxacin, perfloxacin and amikacin on the biological properties of Salmonella strains. Folia Microbiol 42:327–332

    CAS  Google Scholar 

  • Mann NH (2005) The third age of phage. PLoS Biol 3:e182

    PubMed  Google Scholar 

  • Marsh P, Wellington EMH (1994) Phage–host interactions in soil. FEMS Microbiol Ecol 15:99–107

    CAS  Google Scholar 

  • Mayer A (1886) Concerning the mosaic disease of tobacco. Die Landwirtshaftliche Versuchsstationen 32:451–467

    Google Scholar 

  • Mei ML, Danovaro R (2004) Virus production and life strategies in aquatic sediments. Limnol Oceanogr 49:459–470

    Google Scholar 

  • Melzer MJ, Bidochka MJ (1998) Diversity of double-stranded RNA viruses within populations of entomopathogenic fungi and potential implications for fungal growth and virulence. Mycologia 90:586–594

    CAS  Google Scholar 

  • Meschke JS, Sobsey MD (2003) Comparative reduction of Norwalk virus, poliovirus type 1, F+ RNA coliphage MS2 and Escherichia coli in miniature soil columns. Water Sci Technol 47:85–90

    CAS  PubMed  Google Scholar 

  • Middelboe M, Jorgensen NOG, Kroer N (1996) Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton. Appl Environ Microbiol 62:1991–1997

    CAS  PubMed  Google Scholar 

  • Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P (2006) Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytologist 170:165–175

    CAS  PubMed  Google Scholar 

  • Nie M, Zhang XD, Wang JQ, Jiang LF, Yang J, Quan ZX, Cui XH, Fang CM, Li B (2009) Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biol Biochem 41:2535–2542

    CAS  Google Scholar 

  • Offre P, Pivato B, Siblot S, Gamalero E, Corberand T, Lemanceau P, Mougel C (2007) Identification of bacterial groups preferentially associated with mycorrhizal roots of Medicago truncatula. Appl Environ Microbiol 73:913–921

    CAS  PubMed  Google Scholar 

  • Ohnishi M, Kurokawa K, Hayashi T (2001) Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol 9:481–485

    CAS  PubMed  Google Scholar 

  • Pantastico-Caldas M, Duncan KE, Istock CA, Bell JA (1992) Population dynamics of bacteriophage and Bacillus subtilis in soil. Ecology 73:1888–1902

    Google Scholar 

  • Paul JH, Rose JB, Jiang SC, Kellogg CA, Dickson L (1993) Distribution of viral abundance in the reef environment of Key Largo. Florida Appl Environ Microbiol 59:718–724

    CAS  Google Scholar 

  • Pavinato PS, Merlin A, Rosolem CA (2008) Organic compounds from plant extracts and their effect on soil phosphorus availability. Pesquisa Agropecuaria Brasileira 43:1379–1388

    Google Scholar 

  • Personnic S, Domaizon I, Dorigo U, Berdjeb L, Jacquet S (2009) Seasonal and spatial variability of virio-, bacterio-, and picophytoplanktonic abundances in three peri-alpine lakes. Hydrobiologia 627:99–116

    Google Scholar 

  • Pourcher AM, Francoise PB, Virginie F, Agnieszka G, Vasilica S, Gerard M (2007) Survival of faecal indicators and enteroviruses in soil after land-spreading of municipal sewage sludge. Appl Soil Ecol 35:473–479

    Google Scholar 

  • Prigent M, Leroy M, Confalonieri F, Dutertre M, DuBow MS (2005) A diversity of bacteriophage forms and genomes can be isolated from the surface sands of the Sahara Desert. Extremophiles 9:289–296

    CAS  PubMed  Google Scholar 

  • Proctor LM, Fuhrman JA (1990) Viral mortality of marine bacteria and cyanobacteria. Nature (London) 343:60–62

    Google Scholar 

  • Ptashne M (1991) A genetic switch. Blackwell Scientific Publications and Cell Press, Cambridge, MA

    Google Scholar 

  • Rangarajan S, Saleena LM, Nair S (2002) Diversity of Pseudomonas spp. isolated from rice rhizosphere populations grown along a salinity gradient. Microb Ecol 43:280–289

    CAS  PubMed  Google Scholar 

  • Ratti C, Budge G, Ward L, Clover G, Rubies-Autonell C, Henry C (2004) Detection and relative quantitation of Soil-borne cereal mosaic virus (SBCMV) and Polymyxa graminis in winter wheat using real-time PCR (TaqMan®). J Virol Methods 122:95–103

    CAS  PubMed  Google Scholar 

  • Replicon J, Frankfater A, Miller RV (1995) A continuous culture model to examine factors that affect transduction among Pseudomonas aeruginosa strains in freshwater environments. Appl Environ Microbiol 61:3359–3366

    CAS  PubMed  Google Scholar 

  • Reynolds KA, Gerba CP, Pepper IL (1996) Detection of infectious enteroviruses by an integrated cell culture PCR procedure. Appl Environ Microbiol 62:1424–1427

    CAS  PubMed  Google Scholar 

  • Rice G, Stedman K, Snyder J, Wiedenheft B, Willits D, Brumfield S, McDermott T, Young MJ (2001) Viruses from extreme thermal environments. Proc Natl Acad Sci USA 98:13341–13345

    CAS  PubMed  Google Scholar 

  • Ripp S, Miller RV (1995) Effects of suspended particulates on the frequency of transduction among Pseudomonas aeruginosa in freshwater environments. Appl Environ Microbiol 61:1214–1219

    CAS  PubMed  Google Scholar 

  • Roy K, Ghosh D, Martin EC, White DC, Wommack KE, Williamson KE, Radosevich M (2006) Soil bacterial communities sampled with BioSep beads exhibit a high frequency of lysogeny. 11th international symposium on microbial ecology, Vienna, Austria, 2006

    Google Scholar 

  • Santamaria J, Toranzos GA (2003) Enteric pathogens and soil: a short review. Int Microbiol 6:5–9

    PubMed  Google Scholar 

  • Saye DJ, Miller RV (1989) The aquatic environment: consideration of horizontal gene transmission in a diversified habitat. In: Levy SB, Miller RV (eds) Gene transfer in the environment. McGraw-Hill, New York, pp 223–259

    Google Scholar 

  • Saye DJ, Ogunseitan O, Sayler GS, Miller RV (1987) Potential for transduction of plasmids in a natural freshwater environment: effect of plasmid donor concentration and a natural microbial community on transduction in Pseudomonas aeruginosa. Appl Environ Microbiol 53:987–995

    CAS  PubMed  Google Scholar 

  • Srinivasiah S, Bhavsar J, Thapar K, Liles M, Schoenfeld T, Wommack KE (2008) Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol 159:349–357

    CAS  PubMed  Google Scholar 

  • Steward GF, Azam F (1998) Analysis of marine viral communities: the killer’s fingerprints. Eighth international symposium on Microbial Ecology, Halifax, Canada, 1998, p 313

    Google Scholar 

  • Steward GF, Montiel JL, Azam F (2000) Genome size distributions indicate variability and similarities among marine viral assemblages from diverse environments. Limnol Oceanogr 45:1697–1706

    Google Scholar 

  • Stewart FM, Levin BR (1984) The population biology of bacterial viruses: why be temperate? Theor Pop Biol 26:93–117

    CAS  Google Scholar 

  • Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW (2005) Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3:790–806

    CAS  Google Scholar 

  • Swanson MM, Fraser G, Daniell TJ, Torrance L, Gregory PJ, Taliansky M (2009) Viruses in soils: morphological diversity and abundance in the rhizosphere. Ann Appl Biol 155:51–60

    Google Scholar 

  • Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328

    Google Scholar 

  • Tijdens M, Hoogveld HL, Kamst-van Agterveld MP, Simis SGH, Baudoux AC, Laanbroek HJ, Gons HJ (2008) Population dynamics and diversity of viruses, bacteria and phytoplankton in a shallow eutrophic lake. Microb Ecol 56:29–42

    PubMed  Google Scholar 

  • van der Mee-Marquet N, Domelier AS, Mereghetti L, Lanotte P, Rosenau A, van Leeuwen W, Quentin R (2006) Prophagic DNA fragments in Streptococcus agalactiae strains and association with neonatal meningitis. J Clin Microbiol 44:1049–1058

    PubMed  Google Scholar 

  • Vettori C, Gallori E, Stotzky G (2000) Clay minerals protect bacteriophage PBS1 of Bacillus subtilis against inactivation and loss of transducing ability by UV radiation. Can J Microbiol 46:770–773

    CAS  PubMed  Google Scholar 

  • Vettori C, Stotzky G, Yoder M, Gallori E (1999) Interaction between bacteriophage PBS1 and clay minerals and transduction of Bacillus subtilis by clay-phage complexes. Environ Microbiol 1:347–355

    CAS  PubMed  Google Scholar 

  • Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914

    CAS  PubMed  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    CAS  PubMed  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    CAS  PubMed  Google Scholar 

  • Weitz JS, Hartman H, Levin SA (2005) Coevolutionary arms race between bacteria and bacteriophage. Proc Natl Acad Sci USA 102:9535–9540

    CAS  PubMed  Google Scholar 

  • Wen K, Ortmann AC, Suttle CA (2004) Accurate estimation of viral abundance by epifluorescence microscopy. Appl Environ Microbiol 70:3862–3867

    CAS  PubMed  Google Scholar 

  • Wilcox RM, Fuhrman JA (1994) Bacterial viruses in coastal seawater: lytic rather than lysogenic production. Mar Ecol Prog Ser 114:35–45

    Google Scholar 

  • Williamson KE, Radosevich M, Smith DW, Wommack KE (2007) Incidence of lysogeny within temperate and extreme soil environments. Environ Microbiol 9:2563–2574

    CAS  PubMed  Google Scholar 

  • Williamson KE, Radosevich M, Wommack KE (2005) Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 71:3119–3125

    CAS  PubMed  Google Scholar 

  • Williamson KE, Schnitker JB, Radosevich M, Smith DW, Wommack KE (2008) Cultivation-based assessment of lysogeny among soil bacteria. Microb Ecol 56:437–447

    PubMed  Google Scholar 

  • Williamson KE, Wommack KE, Radosevich M (2003) Sampling natural viral communities from soil for culture-independent analyses. Appl Environ Microbiol 69:6628–6633

    CAS  PubMed  Google Scholar 

  • Williamson SJ, Houchin LA, McDaniel L, Paul JH (2002) Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida. Appl Environ Microbiol 68:4307–4314

    CAS  PubMed  Google Scholar 

  • Winget DM, Wommack KE (2008) Randomly amplified polymorphic DNA PCR as a tool for assessment of marine viral richness. Appl Environ Microbiol 74:2612–2618

    CAS  PubMed  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    CAS  PubMed  Google Scholar 

  • Wommack KE, Ravel J, Hill RT, Colwell RR (1999) Population dynamics of Chesapeake Bay virioplankton: Total community analysis using pulsed field gel electrophoresis. Appl Environ Microbiol 65:231–240

    CAS  PubMed  Google Scholar 

  • Wommack KE, Williamson SJ, Sundbergh A, Helton RR, Glazer BT, Portune K, Cary SC (2004) An instrument for collecting discrete large-volume water samples suitable for ecological studies of microorganisms. Deep Sea Res Part I Oceanogr Res Pap 51:1781–1792

    Google Scholar 

  • Yin X, Zeph LR, Stotzky G (1997) A simple method for enumerating bacteriophages in soil. Can J Microbiol 43:461–466

    CAS  PubMed  Google Scholar 

  • Zaitlin M (1998) The discovery of the causal agent of the tobacco mosaic disease. In: Kung SD, Yang SF (eds) Discoveries in plant biology. World Publishing Co, Hong Kong, pp 105–110

    Google Scholar 

  • Zhuang J, Jin Y (2003) Virus retention and transport through Al-oxide coated sand columns: effects of ionic strength and composition. J Contam Hydrol 60:193–209

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt E. Williamson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Williamson, K.E. (2011). Soil Phage Ecology: Abundance, Distribution, and Interactions with Bacterial Hosts. In: Witzany, G. (eds) Biocommunication in Soil Microorganisms. Soil Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14512-4_4

Download citation

Publish with us

Policies and ethics