Skip to main content

Integration of Cell-to-Cell Signals in Soil Bacterial Communities

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 23))

Abstract

Soil bacteria employ multitiered signaling mechanisms to structure multicellular communities, coordinate behaviors within these communities, and to interact with their eukaryotic hosts. Bacteria deploy signals to estimate numbers of bacterial cells within diffusion-limited environments and then modulate gene expression in response to changes in population densities. This behavior is known as “quorum sensing” (QS). Many Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as QS signals. In γ-proteobacteria, AHL-mediated signaling itself is regulated by the orthologs of the GacS/GacA two-component global regulatory system. In response to an unknown signal, GacS/GacA orthologs control genes involved in quorum sensing, virulence, stress survival, motility, and the production of secondary metabolites and exoenzymes. GacS is an unorthodox sensor kinase predicted to autophosphorylate in the presence of a currently unknown endogenous signal. In Pseudomonas spp., GacS interacts with the orphan sensor kinases RetS and LadS, which modulate activity of GacS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarons S, Abbas A, Adams C, Fenton A, O’Gara F (2000) A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113. J Bacteriol 182:3913–3919

    Article  PubMed  CAS  Google Scholar 

  • Ahmer BM (2004) Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol Microbiol 52:933–945

    Article  PubMed  CAS  Google Scholar 

  • Ahmer BM, van Reeuwijk J, Watson PR, Wallis TS, Heffron F (1999) Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol 31:971–982

    Article  PubMed  CAS  Google Scholar 

  • Albus AM, Pesci EC, Runyen-Janecky LJ, West SE, Iglewski BH (1997) Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3928–3935

    PubMed  CAS  Google Scholar 

  • Altier C, Suyemoto M, Lawhon SD (2000a) Regulation of Salmonella enterica serovar Typhimurium invasion genes by csrA. Infect Immun 68:6790–6797

    Article  PubMed  CAS  Google Scholar 

  • Altier C, Suyemoto M, Ruiz AI, Burnham KD, Maurer R (2000b) Characterization of two novel regulatory genes affecting Salmonella invasion gene expression. Mol Microbiol 35:635–646

    Article  PubMed  CAS  Google Scholar 

  • Baikalov I, Schroder I, Kaczor-Grzeskowiak M, Grzeskowiak K, Gunsalus RP, Dickerson RE (1996) Structure of the Escherichia coli response regulator NarL. Biochemistry 35:11053–11061

    Article  PubMed  CAS  Google Scholar 

  • Barnett MJ, Fisher RF (2006) Global gene expression in the rhizobial-legume symbiosis. Symbiosis 42:1–24

    CAS  Google Scholar 

  • Barnett MJ, Toman CJ, Fisher RF, Long SR (2004) A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote–host interaction. Proc Natl Acad Sci USA 101:16636–16641

    Article  PubMed  CAS  Google Scholar 

  • Bartels FW et al (2007) Effector-stimulated single molecule protein-DNA interactions of a quorum-sensing system in Sinorhizobium meliloti. Biophys J 92:4391–4400

    Article  PubMed  CAS  Google Scholar 

  • Bauer WD (1977) Lectins as determinants of specificity in legume-Rhizobium symbiosis. Basic Life Sci 9:283–297

    PubMed  CAS  Google Scholar 

  • Baysse C et al (2005) Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane properties. Microbiology 151:2529–2542

    Article  PubMed  CAS  Google Scholar 

  • Becker A et al (1997) The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products. J Bacteriol 179:1375–1384

    PubMed  CAS  Google Scholar 

  • Bera AK et al (2009) Structure of PqsD, a Pseudomonas quinolone signal biosynthetic enzyme, in complex with anthranilate. Biochemistry 48:8644–8655

    Article  PubMed  CAS  Google Scholar 

  • Blumer C, Heeb S, Pessi G, Haas D (1999) Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 96:14073–14078

    Article  PubMed  CAS  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223

    Article  PubMed  CAS  Google Scholar 

  • Bredenbruch F, Geffers R, Nimtz M, Buer J, Haussler S (2006) The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 8:1318–1329

    Article  PubMed  CAS  Google Scholar 

  • Brencic A et al (2009) The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol 73:434–445

    Article  PubMed  CAS  Google Scholar 

  • Bull CT, Duffy B, Voisard C, Defago G, Keel C, Haas D (2001) Characterization of spontaneous gacS and gacA regulatory mutants of Pseudomonas fluorescens biocontrol strain CHA0. Antonie Van Leeuwenhoek 79:327–336

    Article  PubMed  CAS  Google Scholar 

  • Caetano-Anolles G, Wrobel B, Bauer WD (1992) Growth and movement of spot inoculated Rhizobium meliloti on the root surface of alfalfa. Plant Physiol 98(3):1181–1189

    Article  PubMed  CAS  Google Scholar 

  • Capela D, Filipe C, Bobilk C, Batut J, Bruand C (2006) Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection. Mol Plant Microbe Interact 19:363–372

    Article  PubMed  CAS  Google Scholar 

  • Castaneda M, Guzman J, Moreno S, Espin G (2000) The GacS sensor kinase regulates alginate and poly-beta-hydroxybutyrate production in Azotobacter vinelandii. J Bacteriol 182:2624–2628

    Article  PubMed  CAS  Google Scholar 

  • Castaneda M, Sanchez J, Moreno S, Nunez C, Espin G (2001) The global regulators GacA and sigma(S) form part of a cascade that controls alginate production in Azotobacter vinelandii. J Bacteriol 183:6787–6793

    Article  PubMed  CAS  Google Scholar 

  • Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11:1119–1129

    Article  PubMed  CAS  Google Scholar 

  • Chancey ST, Wood DW, Pierson LS 3rd (1999) Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 65:2294–2299

    PubMed  CAS  Google Scholar 

  • Charkowski AO (2009) Decaying signals: will understanding bacterial-plant communications lead to control of soft rot? Curr Opin Biotechnol 20:178–184

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR, Chatterjee AK (2003) GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant Microbe Interact 16:1106–1117

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Teplitski M, Robinson JB, Rolfe BG, Bauer WD (2003) Proteomic analysis of wild-type Sinorhizobium meliloti responses to N-acyl homoserine lactone quorum sensing signals and the transition to stationary phase. J Bacteriol 185:5029–5036

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Pinto UM, Winans SC (2009) Transsexuality in the rhizosphere: Quorum Sensing reversibly converts Agrobacterium tumefaciens from phenotypically female to male. J Bacteriol 191:3375–3383

    Article  PubMed  CAS  Google Scholar 

  • Coleman JP et al (2008) Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol 190:1247–1255

    Article  PubMed  CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  PubMed  CAS  Google Scholar 

  • Daniels R et al (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277:462–468

    Article  PubMed  CAS  Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  PubMed  CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  PubMed  CAS  Google Scholar 

  • Diggle SP, Cornelis P, Williams P, Camara M (2006) 4-quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol 296:83–91

    Article  PubMed  CAS  Google Scholar 

  • Diggle SP, Gardner A, West SA, Griffin AS (2007a) Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos Trans R Soc Lond B Biol Sci 362:1241–1249

    Article  PubMed  CAS  Google Scholar 

  • Diggle SP et al (2007b) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96

    Article  PubMed  CAS  Google Scholar 

  • Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43

    Article  PubMed  CAS  Google Scholar 

  • Djordjevic MA (2004) Sinorhizobium meliloti metabolism in the root nodule: a proteomic perspective. Proteomics 4:1859–1872

    Article  PubMed  CAS  Google Scholar 

  • Dobretsov S, Teplitski M, Paul V (2009) Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25:413–427

    Article  PubMed  CAS  Google Scholar 

  • Dong YH, Zhang XF, Xu JL, Tan AT, Zhang LH (2005) VqsM, a novel AraC-type global regulator of quorum-sensing signalling and virulence in Pseudomonas aeruginosa. Mol Microbiol 58:552–564

    Article  PubMed  CAS  Google Scholar 

  • Duan KM, Dammel C, Stein J, Rabin H, Surette MG (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50:1477–1491

    Article  PubMed  CAS  Google Scholar 

  • Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449

    Article  PubMed  CAS  Google Scholar 

  • Egan SM, Stewart V (1991) Mutational analysis of nitrate regulatory gene narL in Escherichia coli K-12. J Bacteriol 173:4424–4432

    PubMed  CAS  Google Scholar 

  • Egland KA, Greenberg EP (2001) Quorum sensing in Vibrio fischeri: analysis of the LuxR DNA binding region by alanine-scanning mutagenesis. J Bacteriol 183:382–386

    Article  PubMed  CAS  Google Scholar 

  • Elasri M et al (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    Article  PubMed  CAS  Google Scholar 

  • Ellermeier CD, Ellermeier JR, Slauch JM (2005) HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. Mol Microbiol 57:691–705

    Article  PubMed  CAS  Google Scholar 

  • Eriksson AR, Andersson RA, Pirhonen M, Palva ET (1998) Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 11:743–752

    Article  PubMed  CAS  Google Scholar 

  • Espinosa-Urgel M (2003) Resident parking only: rhamnolipids maintain fluid channels in biofilms. J Bacteriol 185:699–700

    Article  PubMed  CAS  Google Scholar 

  • Farrow JM 3rd, Sund ZM, Ellison ML, Wade DS, Coleman JP, Pesci EC (2008) PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol 190:7043–7051

    Article  PubMed  CAS  Google Scholar 

  • Fletcher MP, Diggle SP, Crusz SA, Chhabra SR, Camara M, Williams P (2007) A dual biosensor for 2-alkyl-4-quinolone quorum-sensing signal molecules. Environ Microbiol 9:2683–2693

    Article  PubMed  CAS  Google Scholar 

  • Fuqua C, Eberhard A (1999) Signal generation in autoinduction systems: synthesis of acylated homoserine lactones by LuxI-type proteins. In: Dunny GM, Winans SC (eds) Cell-cell signalling in bacteria. American Society for Microbiology, Washington, DC, pp 211–242

    Google Scholar 

  • Gaffney TD, Lam ST (1999) DNA encoding LemA-independent GacA and its use in activating gene expression. In: Official gazette of the United States Patent and Trademark Office Patents. Novartis Finance Corporation, USA

    Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  PubMed  CAS  Google Scholar 

  • Galibert F et al (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  PubMed  CAS  Google Scholar 

  • Gantner S et al (2006) In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol Ecol 56:188–194

    Article  PubMed  CAS  Google Scholar 

  • Gao M et al (2007) Effects of AiiA-mediated quorum quenching in Sinorhizobium meliloti on quorum-sensing signals, proteome patterns, and symbiotic interactions. Mol Plant Microbe Interact 20:843–856

    Article  PubMed  CAS  Google Scholar 

  • Gao M et al (2005) sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti. J Bacteriol 187:7931–7944

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Teplitski M (2008) RIVET-a tool for in vivo analysis of symbiotically relevant gene expression in Sinorhizobium meliloti. Mol Plant Microbe Interact 21:162–170

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827–834

    Article  PubMed  CAS  Google Scholar 

  • Gil R, Latorre A, Moya A (2004) Bacterial endosymbionts of insects: insights from comparative genomics. Environ Microbiol 6:1109–1122

    Article  PubMed  CAS  Google Scholar 

  • Gilson L, Kuo A, Dunlap PV (1995) AinS and a new family of autoinducer synthesis proteins. J Bacteriol 177:6946–6951

    PubMed  CAS  Google Scholar 

  • Givskov M et al (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622

    PubMed  CAS  Google Scholar 

  • Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67:574–592

    Article  PubMed  CAS  Google Scholar 

  • González N, Heeb S, Valverde C, Kay E, Reimmann C, Junier T, Haas D (2008) Genome-wide search reveals a novel GacA-regulated small RNA in Pseudomonas species. BMC Genomics 9:167–181

    Article  PubMed  CAS  Google Scholar 

  • Goodier RI, Ahmer BM (2001) SirA orthologs affect both motility and virulence. J Bacteriol 183:2249–2258

    Article  PubMed  CAS  Google Scholar 

  • Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7:745–754

    Article  PubMed  CAS  Google Scholar 

  • Goodman AL, Merighi M, Hyodo M, Ventre I, Filloux A, Lory S (2009) Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev 23:249–259

    Article  PubMed  CAS  Google Scholar 

  • Gurich N, Gonzalez JE (2009) Role of quorum sensing in Sinorhizobium meliloti-alfalfa symbiosis. J Bacteriol 191:4372–4382

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Keel C, Reimmann C (2002) Signal transduction in plant-beneficial rhizobacteria with biocontrol properties. Antonie Van Leeuwenhoek 81:385–395

    Article  PubMed  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  PubMed  CAS  Google Scholar 

  • Hao Y, Winans SC, Glick BR, Charles TC (2010) Identification and characterization of new LuxR/LuxI-type quorum sensing systems from metagenomic libraries. Environ Microbiol 12(1):105–117

    Article  PubMed  CAS  Google Scholar 

  • Heeb S, Blumer C, Haas D (2002) Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184:1046–1056

    Article  PubMed  CAS  Google Scholar 

  • Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact 14:1351–1363

    Article  PubMed  CAS  Google Scholar 

  • Hense BA, Kuttler C, Muller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239

    Article  PubMed  CAS  Google Scholar 

  • Heurlier K, Denervaud V, Pessi G, Reimmann C, Haas D (2003) Negative control of quorum sensing by RpoN (sigma54) in Pseudomonas aeruginosa PAO1. J Bacteriol 185:2227–2235

    Article  PubMed  CAS  Google Scholar 

  • Heurlier K et al (2004) Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186:2936–2945

    Article  PubMed  CAS  Google Scholar 

  • Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder JI (2003) Molecular signals and receptors: controlling rhizosphere interactions between plants and other organisms. Ecology 84:858–868

    Article  Google Scholar 

  • Hoang HH, Becker A, Gonzalez JE (2004) The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J Bacteriol 186:5460–5472

    Article  PubMed  CAS  Google Scholar 

  • Hornby JM et al (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992

    Article  PubMed  CAS  Google Scholar 

  • Hrabak EM, Willis DK (1992) The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J Bacteriol 174:3011–3020

    PubMed  CAS  Google Scholar 

  • Humair B, Gonzalez N, Mossialos D, Reimmann C, Haas D (2009) Temperature-responsive sensing regulates biocontrol factor expression in Pseudomonas fluorescens CHA0. ISME J 3:955–965

    Article  PubMed  CAS  Google Scholar 

  • Jensen V et al (2006) RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol 188:8601–8606

    Article  PubMed  CAS  Google Scholar 

  • Johnston C, Pegues DA, Hueck CJ, Lee A, Miller SI (1996) Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily. Mol Microbiol 22:715–727

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    Article  PubMed  CAS  Google Scholar 

  • Juhas M, Wiehlmann L, Salunkhe P, Lauber J, Buer J, Tummler B (2005) GeneChip expression analysis of the VqsR regulon of Pseudomonas aeruginosa TB. FEMS Microbiol Lett 242:287–295

    Article  PubMed  CAS  Google Scholar 

  • Karamanoli K, Lindow SE (2006) Disruption of N-acyl homoserine lactone-mediated cell signaling and iron acquisition in epiphytic bacteria by leaf surface compounds. Appl Environ Microbiol 72:7678–7686

    Article  PubMed  CAS  Google Scholar 

  • Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA 102:17136–17141

    Article  PubMed  CAS  Google Scholar 

  • Kay E et al (2006) Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol 188:6026–6033

    Article  PubMed  CAS  Google Scholar 

  • Keshavan ND, Chowdhary PK, Haines DC, Gonzalez JE (2005) L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J Bacteriol 187:8427–8436

    Article  PubMed  CAS  Google Scholar 

  • Khokhlov AS et al (1967) A-factor responsible for biosynthesis of streptomycin in mutant strains of Actinomyces streptomycini. Dokl Akad Nauk SSSR (Proc Natl Acad Sci USSSR) 177:232

    CAS  Google Scholar 

  • Kim W, Surette MG (2006) Coordinated regulation of two independent cell-cell signaling systems and swarmer differentiation in Salmonella enterica serovar Typhimurium. J Bacteriol 188:431–440

    Article  PubMed  CAS  Google Scholar 

  • Kitten T, Kinscherf TG, McEvoy JL, Willis DK (1998) A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol Microbiol 28:917–929

    Article  PubMed  CAS  Google Scholar 

  • Koch B, Liljefors T, Persson T, Nielsen J, Kjelleberg S, Givskov M (2005) The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. Microbiology 151:3589–3602

    Article  PubMed  CAS  Google Scholar 

  • Koch B et al (2002) Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudate via the Gac two-component regulatory system. Appl Environ Microbiol 68:4509–4516

    Article  PubMed  CAS  Google Scholar 

  • Lapouge K, Schubert M, Allain FH, Haas D (2008) Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67:241–253

    Article  PubMed  CAS  Google Scholar 

  • Laville J, Voisard C, Keel C, Maurhofer M, Defago G, Haas D (1992) Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci USA 89:1562–1566

    Article  PubMed  CAS  Google Scholar 

  • Lawhon SD, Maurer R, Suyemoto M, Altier C (2002) Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol 46:1451–1464

    Article  PubMed  CAS  Google Scholar 

  • Lerat E, Moran NA (2004) The evolutionary history of quorum-sensing systems in bacteria. Mol Biol Evol 21:903–913

    Article  PubMed  CAS  Google Scholar 

  • Li L et al (2008) Inactivation of microbial arginine deiminases by L-canavanine. J Am Chem Soc 130:1918–1931

    Article  PubMed  CAS  Google Scholar 

  • Long SR, Buikema WJ, Ausubel FM (1982) Cloning Rhizobium meliloti nodulation genes by direct complementation of Nod-mutants. Nature 298:485–488

    Article  CAS  Google Scholar 

  • Lu X et al (2005) L-canavanine is a time-controlled mechanism-based inhibitor of Pseudomonas aeruginosa arginine deiminase. J Am Chem Soc 127:16412–16413

    Article  PubMed  CAS  Google Scholar 

  • Marketon MM, Gonzalez JE (2002) Identification of two quorum-sensing systems in Sinorhizobium meliloti. J Bacteriol 184:3466–3475

    Article  PubMed  CAS  Google Scholar 

  • Marketon MM, Gronquist MR, Eberhard A, Gonzalez JE (2002) Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol 184:5686–5695

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U et al (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449

    Article  PubMed  CAS  Google Scholar 

  • Mitra RM, Shaw SL, Long SR (2004) Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume-rhizobia symbiosis. Proc Natl Acad Sci USA 101:10217–10222

    Article  PubMed  CAS  Google Scholar 

  • Moolenaar GF, van Sluis CA, Backendorf C, van de Putte P (1987) Regulation of the Escherichia coli excision repair gene uvrC. Overlap between the uvrC structural gene and the region coding for a 24 kD protein. Nucleic Acids Res 15:4273–4289

    Article  PubMed  CAS  Google Scholar 

  • Mulligan JT, Long SR (1985) Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc Natl Acad Sci USA 82:6609–6613

    Article  PubMed  CAS  Google Scholar 

  • Ng W-L, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    Article  PubMed  CAS  Google Scholar 

  • Noel JT et al (2010) Salmonella SdiA recognizes N-acyl homoserine lactones from Pectobacterium carotovorum in vitro but not in a bacterial soft rot. Mol Plant Microbe Interact 23(3):273–282

    Article  PubMed  CAS  Google Scholar 

  • Parkins MD, Ceri H, Storey DG (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40:1215–1226

    Article  PubMed  CAS  Google Scholar 

  • Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210

    PubMed  CAS  Google Scholar 

  • Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC (2002) A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J Bacteriol 184:5067–5076

    Article  PubMed  CAS  Google Scholar 

  • Pereira CS, McAuley JR, Taga ME, Xavier KB, Miller ST (2008) Sinorhizobium meliloti, a bacterium lacking the autoinducer-2 (AI-2) synthase, responds to AI-2 supplied by other bacteria. Mol Microbiol 70:1223–1235

    Article  PubMed  CAS  Google Scholar 

  • Pernestig AK, Melefors O, Georgellis D (2001) Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. J Biol Chem 276:225–231

    Article  PubMed  CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  PubMed  CAS  Google Scholar 

  • Poole P, Allaway D (2000) Carbon and nitrogen metabolism in Rhizobium. Adv Microb Physiol 43:117–163

    Article  PubMed  CAS  Google Scholar 

  • Quinones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant Microbe Interact 17:521–531

    Article  PubMed  CAS  Google Scholar 

  • Rajamani S et al (2008) The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. Mol Plant Microbe Interact 21:1184–1192

    Article  PubMed  CAS  Google Scholar 

  • Rampioni G et al (2007) RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in Pseudomonas aeruginosa. Mol Microbiol 66:1557–1565

    Article  PubMed  CAS  Google Scholar 

  • Ramsay JP et al (2009) A LuxRI-family regulatory system controls excision and transfer of the Mesorhizobium loti strain R7A symbiosis island by activating expression of two conserved hypothetical genes. Mol Microbiol 73:1141–1155

    Article  PubMed  CAS  Google Scholar 

  • Reimmann C et al (1997) The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309–319

    Article  PubMed  CAS  Google Scholar 

  • Reimmann C, Valverde C, Kay E, Haas D (2005) Posttranscriptional repression of GacS/GacA-controlled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0. J Bacteriol 187:276–285

    Article  PubMed  CAS  Google Scholar 

  • Romeo T (1998a) Escherichia coli csrB gene and RNA encoded thereby. In: United States Patent and Trademark Office. University of North Texas, Health Science Center at Fort Worth, Fort Worth, TX

    Google Scholar 

  • Romeo T (1998b) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule csrB. Mol Microbiol 29:1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Romeo T, Gong M, Liu MY, Brun-Zinkernagel AM (1993) Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175:4744–4755

    PubMed  CAS  Google Scholar 

  • Sakuragi Y, Kolter R (2007) Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 189:5383–5386

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Contreras M, Bauer WD, Gao M, Robinson JB, Downie AJ (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc Lond B Biol Sci 362:1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Schuhegger R et al (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  PubMed  CAS  Google Scholar 

  • Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    Article  PubMed  CAS  Google Scholar 

  • Shi XY, Dumenyo CK, Hernandez-Martinez R, Azad H, Cooksey DA (2009) Characterization of regulatory pathways in Xylella fastidiosa: genes and phenotypes controlled by gacA. Appl Environ Microbiol 75:2275–2283

    Article  PubMed  CAS  Google Scholar 

  • Skorupska A, Janczarek M, Marczak M, Mazur A, Krol J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 5:7

    Article  PubMed  CAS  Google Scholar 

  • Smith JG, Latiolais JA, Guanga GP, Pennington JD, Silversmith RE, Bourret RB (2004) A search for amino acid substitutions that universally activate response regulators. Mol Microbiol 51:887–901

    Article  PubMed  CAS  Google Scholar 

  • Smith JN et al (2008) SdiA, an N-acylhomoserine lactone receptor, becomes active during the transit of Salmonella enterica through the gastrointestinal tract of turtles. PLoS ONE 3:e2826

    Article  PubMed  CAS  Google Scholar 

  • Stevens AM, Dolan KM, Greenberg EP (1994) Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc Natl Acad Sci USA 91:12619–12623

    Article  PubMed  CAS  Google Scholar 

  • Stover CK et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K et al (2002) Regulatory circuitry of the CsrA/csrB and BarA/UvrY systems of Escherichia coli. J Bacteriol 184:5130–5140

    Article  PubMed  CAS  Google Scholar 

  • Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA 96:2408–2413

    Article  PubMed  CAS  Google Scholar 

  • Teplitski M, Ahmer BM (2004) The control of secondary metabolism, motility, and virulence by the two-component regulatory system BarA/SirA of Salmonella and other γ-proteobacteria. In: Pruss BM (ed) Global regulatory networks in enteric bacteria. Research Signpost, Kerala, India

    Google Scholar 

  • Teplitski M, Al-Agely A, Ahmer BM (2006) Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium. Microbiology 152:3411–3424

    Article  PubMed  CAS  Google Scholar 

  • Teplitski M et al (2004) Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134:1–10

    Article  CAS  Google Scholar 

  • Teplitski M, Eberhard A, Gronquist MR, Gao M, Robinson JB, Bauer WD (2003a) Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium. Arch Microbiol 180:494–497

    Article  PubMed  CAS  Google Scholar 

  • Teplitski M, Goodier RI, Ahmer BM (2003b) Pathways leading from BarA/SirA to motility and virulence gene expression in Salmonella. J Bacteriol 185:7257–7265

    Article  PubMed  CAS  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648

    Article  PubMed  CAS  Google Scholar 

  • Teplitski M, Mathesius U, Rumbaugh KP (2010) Perception and Degradation of N-Acyl Homoserine Lactone Quorum Sensing Signals by Mammalian and Plant Cells. Chem Rev. doi:10.1021/cr100045m E-Publication Date (Web): June 10, 2010

    Google Scholar 

  • Thompson LS, Webb JS, Rice SA, Kjelleberg S (2003) The alternative sigma factor RpoN regulates the quorum sensing gene rhlI in Pseudomonas aeruginosa. FEMS Microbiol Lett 220:187–195

    Article  PubMed  CAS  Google Scholar 

  • Timmers AC et al (2000) Saprophytic intracellular rhizobia in alfalfa nodules. Mol Plant Microbe Interact 13:1204–1213

    Article  PubMed  CAS  Google Scholar 

  • Trott AE, Stevens AM (2001) Amino acid residues in LuxR critical for its mechanism of transcriptional activation during quorum sensing in Vibrio fischeri. J Bacteriol 183:387–392

    Article  PubMed  CAS  Google Scholar 

  • Valverde C (2009) Artificial sRNAs activating the Gac/Rsm signal transduction pathway in Pseudomonas fluorescens. Arch Microbiol 191:349–359

    Article  PubMed  CAS  Google Scholar 

  • Valverde C, Heeb S, Keel C, Haas D (2003) RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol Microbiol 50:1361–1379

    Article  PubMed  CAS  Google Scholar 

  • Valverde C, Lindell M, Wagner EGH, Haas D (2004) A repeated GGA motif is critical for the activity and stability of the riboregulator RsmY of Pseudomonas fluorescens. J Biol Chem 279:25066–25074

    Article  PubMed  CAS  Google Scholar 

  • Van Houdt R, Givskov M, Michiels CW (2007) Quorum sensing in Serratia. FEMS Microbiol Rev 31:407–424

    Article  PubMed  CAS  Google Scholar 

  • Ventre I et al (2006) Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci USA 103:171–176

    Article  PubMed  CAS  Google Scholar 

  • Verstraeten N et al (2008) Living on a surface: swarming and biofilm formation. Trends Microbiol 16:496–506

    Article  PubMed  CAS  Google Scholar 

  • Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  CAS  Google Scholar 

  • Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T (2005) CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 56:1648–1663

    Article  PubMed  CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  PubMed  CAS  Google Scholar 

  • Wei JR et al (2006) Regulatory roles of spnT, a novel gene located within transposon TnTIR. Biochem Biophys Res Commun 348:1038–1046

    Article  PubMed  CAS  Google Scholar 

  • Weilbacher T et al (2003) A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48:657–670

    Article  PubMed  CAS  Google Scholar 

  • Whistler CA, Corbell NA, Sarniguet A, Ream W, Loper JE (1998) The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigmaS and the stress response in Pseudomonas fluorescens Pf-5. J Bacteriol 180:6635–6641

    PubMed  CAS  Google Scholar 

  • Whistler CA, Koropatnick TA, Pollack A, McFall-Ngai MJ, Ruby EG (2007) The GacA global regulator of Vibrio fischeri is required for normal host tissue responses that limit subsequent bacterial colonization. Cell Microbiol 9:766–778

    Article  PubMed  CAS  Google Scholar 

  • Whiteley M, Greenberg EP (2001) Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol 183:5529–5534

    Article  PubMed  CAS  Google Scholar 

  • Whiteley M, Parsek MR, Greenberg EP (2000) Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. J Bacteriol 182:4356–4360

    Article  PubMed  CAS  Google Scholar 

  • Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191

    Article  PubMed  CAS  Google Scholar 

  • Williamson LL, Borlee BR, Schloss PD, Guan C, Allen HK, Handelsman J (2005) Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Appl Environ Microbiol 71:6335–6344

    Article  PubMed  CAS  Google Scholar 

  • Workentine ML, Chang LM, Ceri H, Turner RJ (2009) The GacS-GacA two-component regulatory system of Pseudomonas fluorescens: a bacterial two-hybrid analysis. FEMS Microbiol Lett 292:50–56

    Article  PubMed  CAS  Google Scholar 

  • Xiao G et al (2006a) MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 62:1689–1699

    Article  PubMed  CAS  Google Scholar 

  • Xiao G, He J, Rahme LG (2006b) Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology 152:1679–1686

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Peng Q, San Fracisco M, Wang Y, Zeng Q, Yang CH (2008) Type III secretion system genes of Dickeya dadantii 3937 are induced by plant phenolic acids. PLoS ONE e2973:2971–2979

    Google Scholar 

  • Zhang RG et al (2002) Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:971–974

    Article  PubMed  CAS  Google Scholar 

  • Zolfaghar I, Angus AA, Kang PJ, To A, Evans DJ, Fleiszig SM (2005) Mutation of retS, encoding a putative hybrid two-component regulatory protein in Pseudomonas aeruginosa, attenuates multiple virulence mechanisms. Microbes Infect 7:1305–1316

    Article  PubMed  CAS  Google Scholar 

  • Zuber S et al (2003) GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:634–644

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Preparation of this manuscript was supported by USDA NRI 2007-35319-18158 (M.T. and J.B.R.), and CRIS project FLA-SWS-004984 of Florida Agricultural Experimental Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Teplitski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Teplitski, M., Merighi, M., Gao, M., Robinson, J. (2011). Integration of Cell-to-Cell Signals in Soil Bacterial Communities. In: Witzany, G. (eds) Biocommunication in Soil Microorganisms. Soil Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14512-4_14

Download citation

Publish with us

Policies and ethics