Skip to main content

Mannosylerythritol Lipids: Microbial Production and Their Applications

  • Chapter
  • First Online:
Biosurfactants

Part of the book series: Microbiology Monographs ((MICROMONO,volume 20))

Abstract

Mannosylerythritol lipids (MELs) are surface-active compounds synthesized by yeast strains of the genus Pseudozyma sp. or Ustilago sp., from soybean oil or n-alkane (over 100g/L). The former strain produces it as the major while the latter as the minor component. They belong to the class of glycolipids. Although MELs have been known for more than five decades, they recently regained attention due to their environmental compatibility, mild production conditions, structural diversity, self-assembling properties, versatile biochemical functions, and high yield when compared to other biosurfactants. In this chapter, structural diversity of MELs, genetic diversity of MEL producers, various fermentation conditions, downstream steps involved in their separation, factors affecting the amount and type of MEL produced, and self-assembling properties and their applications are discussed. The biosynthetic pathways and the genetic regulation of the MEL production are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aparicio JF, Caffrey P, Gil JA, Zotchev SB (2003) Polyene antibiotic biosynthesis gene clusters. Appl Microbiol Biotechnol 61:179–188

    PubMed  CAS  Google Scholar 

  • Bhattacharjee SS, Haskins RH, Gorin PAJ (1970) Location of acyl groups on two partly acylated glycolipids from strains of Ustilago (smut fungi). Carbohydr Res 13:235–246

    Article  CAS  Google Scholar 

  • Boothroyd B, Thorn JA, Haskins RH (1956) Biochemistry of the ustilaginales. XII. characterization of extracellular glycolipids produced by Ustilago sp. Can J Biochem Physiol 34:10–14

    Article  PubMed  CAS  Google Scholar 

  • Deml G, Anke T, Oberwinkler F, Gianetti BM, Steglich W (1980) Schizonellin A and B, new glycolipids from Schizonella melanogramma. Phytochemistry 19:83–87

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    PubMed  CAS  Google Scholar 

  • Dobereiner HG (2000) Properties of giant vesicles. Curr Opin Colloid Interface Sci 5:256–263

    Article  CAS  Google Scholar 

  • Fluharty AL, O’Brien JS (1969) A mannose- and erythritol-containing glycolipid from Ustilago maydis. Biochemistry 8:2627–2632

    Article  PubMed  CAS  Google Scholar 

  • Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D (2007a) Characterization of new types of mannosylerythritol lipids as biosurfactant produced from soybean oil by a Basidiomycetous yeast, Pseudozyma shanxiensis. J Oleo Sci 56:435–442

    Article  PubMed  CAS  Google Scholar 

  • Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D (2007b) Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts. Biotechnol Lett 29:1111–1118

    Article  PubMed  CAS  Google Scholar 

  • Fukuoka T, Morita T, Konishi M, Imura T, Sakai H, Kitamoto D (2007c) Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica. Appl Microbiol Biotechnol 76:801–810

    Article  PubMed  CAS  Google Scholar 

  • Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D (2008) A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B. Carbohydr Res 343:555–560

    Article  PubMed  CAS  Google Scholar 

  • Greenspan P, Fowler SD (1985) Spectrofluorometric studies of lipid probe, Nile red. J Lipid Res 26:781–789

    PubMed  CAS  Google Scholar 

  • Hamme JDV, Singh A, Ward OP (2006) Physiological aspects Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620

    Article  PubMed  Google Scholar 

  • Haskins RH, Thorn JA, Boothroyd B (1955) Biochemistry of the ustilagenales. XI. Metabolic products of Ustilago zeae in submerged culture. Can J Microbiol 1:749–756

    Article  PubMed  CAS  Google Scholar 

  • Hewald S, Josephs K, Bolker M (2005) Genetic analysis of Biosurfactant production in Ustilago maydis. Appl Environ Microbiol 71:3033–3040

    Article  PubMed  CAS  Google Scholar 

  • Hewald S, Linne U, Schere M, Marahiel MA, Kamper J, Bolker M (2006) Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72:5469–5477

    Article  PubMed  CAS  Google Scholar 

  • Im JH, Nakane T, Yanagishita H, Ikegami T, Kitamoto D (2001) Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G. BMC Biotechnol 1:5

    Article  PubMed  CAS  Google Scholar 

  • Im JH, Yanagishita H, Ikegami T, Takeyama Y, Idemoto Y, Koura N, Kitamoto D (2003) Mannosylerythritol lipids, yeast glycolipid biosurfactants, are potential affinity ligand materials for human immunoglobulin G. J Biomed Mater Res 65A:379–385

    Article  CAS  Google Scholar 

  • Imura T, Yanagishita H, Kitamoto D (2004) Coacervate formation from natural glycolipid: one acetyl group on the headgroup triggers coacervate-to-vesicle transition. J Am Chem Soc 126:10804–10805

    Article  PubMed  CAS  Google Scholar 

  • Imura T, Yanagishita H, Ohira J, Sakai H, Abeb M, Kitamoto D (2005) Thermodynamically stable vesicle formation from glycolipid biosurfactant sponge phase. Colloids Surf B Biointerfaces 43:115–121

    Article  PubMed  CAS  Google Scholar 

  • Imura T, Ohta N, Inoue K, Yagi N, Negishi H, Yanagishita H, Kitamoto D (2006) Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures. Chem Eur J 12:2434–2440

    Article  PubMed  CAS  Google Scholar 

  • Imura T, Hikosaka Y, Worakitkanchanakul W, Sakai H, Abe M, Konishi M, Minamikawa H, Kitamoto D (2007a) Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases. Langmuir 23:1659–1663

    Article  PubMed  CAS  Google Scholar 

  • Imura T, Ito S, Azumi R, Yanagishita H, Sakai H, Abe M, Kitamoto D (2007b) Monolayers assembled from a glycolipid biosurfactant from Pseudozyma (Candida) antarctica serve as a high-affinity ligand system for immunoglobulin G and M. Biotechnol Lett 29:865–870

    Article  PubMed  CAS  Google Scholar 

  • Inaba H (2000) New challenge in advanced thermal energy transportation using functionally thermal fluids. Int J Therm Sci 39:991–1003

    Article  CAS  Google Scholar 

  • Inoh Y, Kitamoto D, Hirashima N, Nakanishi M (2001) Biosurfactants of MEL-A increase gene transfection mediated by cationic liposomes. Biochem Biophys Res Commun 289:57–61

    Article  PubMed  CAS  Google Scholar 

  • Inoh Y, Kitamoto D, Hirashima N, Nakanishi M (2004) Biosurfactant MEL-A dramatically increases gene transfection via membrane fusion. J Control Release 94:423–431

    Article  PubMed  CAS  Google Scholar 

  • Isoda H, Nakahara T (1997) Mannosylerythritol lipid induces granulocytic differentiation and inhibits the tyrosine phosphorylation of human myelogenous leukemia cell line K562. Cytotechnology 25:191–195

    Article  PubMed  CAS  Google Scholar 

  • Isoda H, Kitamoto D, Shinmoto H, Matsumura M, Nakahara T (1997a) Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60. Biosci Biotechnol Biochem 61:609–614

    Article  PubMed  CAS  Google Scholar 

  • Isoda H, Shinmoto H, Kitamoto D, Matsumura M, Nakahara T (1997b) Differentiation of human promyelocytic leukemia cell line HL60 by microbial extracellular glycolipids. Lipids 32:263–271

    Article  PubMed  CAS  Google Scholar 

  • Kakugawa K, Tamai M, Imamura K, Miyamoto K, Miyoshi S, Morinaga Y (2002) Isolation of yeast Kurtzmanomyces sp. I-11, novel producer of mannosylerythritol lipid. Biosci Biotechnol Biochem 66:188–191

    Article  PubMed  CAS  Google Scholar 

  • Kawashima H, Nakahara T, Oogaki M, Tabuchi T (1983) Extracellular production of a mannosylerythritol lipid by a mutant of Candida sp. from n-alkanes and triacylglycerols. J Ferment Technol 61:143–149

    CAS  Google Scholar 

  • Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590

    Article  PubMed  CAS  Google Scholar 

  • Kim H-S, Yoon BD, Choung DH, Oh HM, Katsuragi T, Tani Y (1999) Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp SY16. Appl Microbiol Biotechnol 52:713–721

    Article  PubMed  CAS  Google Scholar 

  • Kim H-S, Jeon J-W, Kim B-H, Ahn C-Y, Oh H-M, Yoon B-D (2006) Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation. Appl Microbiol Biotechnol 70:391–396

    Article  PubMed  CAS  Google Scholar 

  • Kitamoto D, Akiba S, Hioki C, Tabuchi T (1990a) Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica. Agric Biol Chem 54:31–36

    Article  CAS  Google Scholar 

  • Kitamoto D, Haneishi K, Nakahara T, Tabuchi T (1990b) Production of mannosylerythritol lipids by Candida antarctica from vegetable oils. Agric Biol Chem 54:37–40

    Article  CAS  Google Scholar 

  • Kitamoto D, Fuzishiro T, Yanagishita H, Nakane T, Nakahara T (1992) Production of mannosylerythritol lipids as biosurfactants by resting cells of Candida antarctica. Biotechnol Lett 14:305–310

    Article  CAS  Google Scholar 

  • Kitamoto D, Nemoto T, Yanagishita H, Nakane T, Kitamoto H, Nakahara T (1993a) Fatty acid metabolism of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Jpn Oil Chem Soc 42:346–358

    Article  CAS  Google Scholar 

  • Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C, Nakahara T (1993b) Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29:91–96

    Article  CAS  Google Scholar 

  • Kitamoto D, Yanagishita H, Hayara K, Kitamoto HK (1998) Contribution of a chain-shortening pathway to the biosynthesis of the fatty acids of mannosyierythritol lipid (biosurfactant) in the yeast Candida antarctica: effect of β-oxidation inhibitors on biosurfactant synthesis. Biotechnol Lett 20:813–818

    Article  CAS  Google Scholar 

  • Kitamoto D, Ghosh SGO, Nakatani Y (2000) Formation of giant vesicle from diacylmannosylerythritols and their binding to concanavalin A. Chem Commun 2000:861–862

    Article  Google Scholar 

  • Kitamoto D, Ikegami T, Suzuki GT, Sasaki A, Takeyama Y, Idemoto Y, Koura N, Yanagishita H (2001a) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica). Biotechnol Lett 23:1709–1714

    Article  CAS  Google Scholar 

  • Kitamoto D, Yanagishita H, Endo A, Nakaiwa M, Nakane M, Akiya T (2001b) Remarkable antiagglomeration effect of a yeast biosurfactant, diacylmannosylerythritol, on ice-water slurry for cold thermal storage. Biotechnol Prog 17:362–365

    Article  PubMed  CAS  Google Scholar 

  • Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants-from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201

    PubMed  CAS  Google Scholar 

  • Kitamoto D (2008) Naturally engineered glycolipid biosurfactants leading to distinctive self-assembling properties. Yakugaku Zasshi 128:695–706

    Article  PubMed  CAS  Google Scholar 

  • Kitamoto D, Morita T, Fukuoka T, Konishi M, Imura T (2009) Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid Interface Sci 14:315–328

    Article  CAS  Google Scholar 

  • Konishi M, Imura T, Fukuoka T, Morita T, Kitamoto D (2007a) A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system. Biotechnol Lett 29:473–480

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, Kitamoto D (2007b) Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma. Appl Microbiol Biotechnol 75:521–531

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, Kitamoto D (2008) Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Appl Microbiol Biotechnol 78:37–46

    Article  PubMed  CAS  Google Scholar 

  • Kurz M, Eder C, Isert D, Li Z, Paulus EF, Schiell M, Toti L, Vertesy L, Wink J, Seibert G (2003) Ustilipids, acylated β-D-mannopyranosyl-D-erythritols from Ustilago maydis and Geotrichum candidum. J Antibiot (Tokyo) 56:91–101

    Article  CAS  Google Scholar 

  • Lin SC (1996) Biosurfactant: recent advances. J Chem Technol Biotechnol 63:109–120

    Article  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2006a) Analysis of expressed sequence tags from the anamorphic basidiomycetous yeast, Pseudozyma antarctica, which produces glycolipid biosurfactants, mannosylerythritol lipids. Yeast 23:661–671

    Article  PubMed  CAS  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2006b) Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Appl Microbiol Biotechnol 73:305–313

    Article  PubMed  CAS  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto HK, Kitamoto D (2007) Characterization of the genus Pseudozyma by the formation of glycolipid biosurfactants, mannosylerythritol lipids. FEMS Yeast Res 7:286–292

    Article  PubMed  CAS  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Yamamoto S, Kitagawa M, Sogabe A, Kitamoto D (2008a) Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J Oleo Sci 57:123–131

    Article  PubMed  CAS  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2008b) Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties. J Biosci Bioeng 105:493–502

    Article  PubMed  CAS  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2008c) Identification of Ustilago cynodontis as a new producers of glycolipid biosurfactants, mannosylerythritol lipids, based on ribosomal DNA sequence. J Oleo Sci 57:549–556

    Article  PubMed  CAS  Google Scholar 

  • Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2009a) Production of glycolipid biosurfactants, mannosylerythritol lipids, by smut fungus, Ustilago scitaminea NBRC 32730. Biosci Biotechnol Biochem 73:788–792

    Article  PubMed  CAS  Google Scholar 

  • Morita T, FukuokaT KM, Imura T, Yamamoto S, Kitagawa M, Sogabe A, Kitamoto D (2009b) Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties. Appl Microbiol Biotechnol 83:1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2009c) Production of glycolipid biosurfactants, mannosylerythritol lipids, using sucrose by fungal and yeast strains, and their interfacial properties. Biosci Biotechnol Biochem 73:2352–2355

    Article  PubMed  CAS  Google Scholar 

  • Morita T, Kitagawa M, Suzuki M, Yamamoto S, Sogabe A, Yanagidani S, Imura T, Fukuoka T, Kitamoto D (2009d) A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows potential moisturizing activity toward cultured human skin cells: the recovery effect of MEL-A on the SDS-damaged human skin cells. J Oleo Sci 58:639–642

    Article  PubMed  CAS  Google Scholar 

  • Mulligan CN (2004) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166

    PubMed  CAS  Google Scholar 

  • Rau U, Nguyen LA, Schulz S, Wray V, Nimtz M, Roeper H, Koch H, Lang S (2005a) Formation and analysis of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol 66:551–5593

    Article  PubMed  CAS  Google Scholar 

  • Rau U, Nguyen LA, Roeper H, Koch H, Lang S (2005b) Fed-batch bioreactor production of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol 68:607–613

    Article  PubMed  CAS  Google Scholar 

  • Rau U, Nguyen LA, Roeper H, Koch H, Lang S (2005c) Downstream processing of mannosylerythritol lipids produced by Pseudozyma aphidis. Eur J Lipid Sci Technol 107:373–380

    Article  CAS  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  PubMed  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  PubMed  CAS  Google Scholar 

  • Shibahara M, Zhao X, Wakamatsu Y, Nomura N, Nakahara T, Jin C, Nagaso H, Murata T, Yokoyama KK (2000) Mannosylerythritol lipid increases levels of galactoceramide in and neurite outgrowth from PC12 pheochromocytoma cells. Cytotechnology 33:247–251

    Article  PubMed  CAS  Google Scholar 

  • Spoeckner S, Wray V, Nimtz M, Lang S (1999) Glycolipids of the smut fungus Ustilago maydis from cultivation on renewable resources. Appl Microbiol Biotechnol 51:33–39

    Article  CAS  Google Scholar 

  • Sugita T, Takashima M, Poonwan N, Mekha N, Malaithao K, Thungmuthawawat B, Pransarn S, Luangsook P, Kudo T (2003) The first isolation of ustilaginomycetous anamorphic yeasts, Pseudozyma species, from patients’ blood and a description of two new species: P. parantarctica and P. thailandica. Microbiol Immunol 47:183–190

    PubMed  CAS  Google Scholar 

  • Tanaka A, Fukui S (1989) Metabolism of n-alkane. In: Rose AH, Harrison JS (ed) The yeasts, metabolism and physiology of yeasts, Vol 3. Academic Press, London, New York, pp 261–287

    Google Scholar 

  • Ueno Y, Hirashima N, Inoh Y, Furuno T, Nakanishi M (2007a) Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection. Biol Pharm Bull 30:169–1723

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y, Inoh Y, Furuno T, Hirashima N, Kitamoto D, Nakanishi M (2007b) NBD-conjugated biosurfactant (MEL-A) shows a new pathway for transfection. J Control Release 123:247–253

    Article  PubMed  CAS  Google Scholar 

  • Vejux A, Kahn E, Dumas D, Besséde G, Ménétrier F, Athias A, Riedinger JM, Frouin F, Stoltz JF, Ogier-Denis E, Todd-Pokropek A, Lizard G (2005) 7-Ketocholesterol favors lipid accumulation and colocalizes with Nile red positive cytoplasmic structures formed during 7-ketocholesterol-induced apoptosis: analysis by flow cytometry, FRET biphoton spectral imaging microscopy, and subcellular fractionation. Cytom A 64A:87–100

    Article  CAS  Google Scholar 

  • Vertesy L, Kurz M, Wink J, Noelken G (2002) Ustilipides, method for the production and the use thereof. US Patent 6,472,158

    Google Scholar 

  • Wakamatsu Y, Zhao X, Jin C, Day N, Shibahara M, Nomura N, Nakahara T, Murata T, Yokoyama KK (2001) Mannosylerythritol lipid induces characteristics of neuronal differentiation in PC12 cells through an ERK-related signal cascade. Eur J Biochem 268:374–383

    Article  PubMed  CAS  Google Scholar 

  • Wander RJA, Vreken P, Ferdiandusse S, Jansen GA, Waterham HR, van Roermunde CWT, Grunsven EGV (2001) Peroxisomal fatty acid α- and β-oxidation in humans: enzymology, peroxisomal metabolite transporters and peroxisomal diseases. Biochem Soc Trans 29:250–267

    Article  Google Scholar 

  • Worakitkanchanakul W, Imura T, Fukuoka T, Morita T, Sakai H, Abe M, Rujiravanit R, Chavadej S, Minamikawa H, Kitamoto D (2008) Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Colloids Surf B Biointerfaces 65:106–112

    Article  PubMed  CAS  Google Scholar 

  • Worakitkanchanakul W, Imura T, Fukuoka T, Morita T, Sakai H, Abe M, Rujiravanit R, Chavadej S, Minamikawa H, Kitamoto D (2009) Phase behavior of ternary mannosylerythritol lipid/water/oil systems. Colloids Surf B Biointerfaces 68:207–212

    Google Scholar 

  • Zhao X, Wakamatsu Y, Shibahara M, Nomura N, Geltinger C, Nakahara T, Murata T, Yokoyama KK (1999) Mannosylerythritol lipid is a potent inducer of apoptosis and differentiation of mouse melanoma cells in culture. Cancer Res 59:482–486

    PubMed  CAS  Google Scholar 

  • Zhao X, Geltinger X, Kishikawa S, Ohshima S, Murata S, Nomura N, Nakahara T, Yokoyama KK (2000) Treatment of mouse melanoma cells with phorbol 12-myristate 13-acetate counteracts mannosylerythritollipid-induced growth arrest and apoptosis. Cytotechnology 33:123–130

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Murata T, Ohno S, Day N, Song J, Nomura N, Nakahara T, Yokoyama KK (2001) Protein kinase Cα plays a critical role in mannosylerythritol lipid induced differentiation of melanoma B16 Cells. J Biol Chem 276:39903–39910

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Doble .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arutchelvi, J., Doble, M. (2011). Mannosylerythritol Lipids: Microbial Production and Their Applications. In: Soberón-Chávez, G. (eds) Biosurfactants. Microbiology Monographs, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14490-5_6

Download citation

Publish with us

Policies and ethics