Skip to main content

Fast Prototyping of Virtual Reality Based Surgical Simulators with PhysX-enabled GPU

  • Chapter
Transactions on Edutainment IV

Part of the book series: Lecture Notes in Computer Science ((TEDUTAIN,volume 6250))

Abstract

We present our experience in fast prototyping of a series of important but computation-intensive functionalities in surgical simulators based on newly released PhysX-enabled GPU. We focus on soft tissue deformation and bleeding simulation, as they are essential but have previously been difficult to be rapidly prototyped. A multilayered soft tissue deformation model is implemented by extending the hardware-accelerated mass-spring system (MSS) in PhysX engine. To ensure accuracy, we configure spring parameters in an analytic way and integrate a fast volume preservation method to overcome the volume loss problem in MSS. Fast bleeding simulation with consideration of both patient behavior and mechanical dynamics is introduced. By making use of the PhysX built-in SPH-based fluid solver with careful assignment of parameters, realistic yet efficient bleeding effects can be achieved. Experimental results demonstrate that our approaches can achieve both interactive frame rates and convincing visual effects even when complex models are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu, A., Tendick, F., Cleary, K., Kaufmann, C.: A survey of surgical simulation: applications, technology, and education. Presence: Teleoperators and Virtual Environments 12(6), 599–614 (2003)

    Article  Google Scholar 

  2. Michel, D., Chen, S.: Serious Games: Games that educate, train and inform. In: Thomson Course Technology, Boston, MA, USA (2006)

    Google Scholar 

  3. Narayanasamy, V., Wong, K.W., Fung, C.C., Rai, S.: Distinguishing games and simulation games from simulators. Comput. Entertain. 4(2), 9 (2006)

    Article  Google Scholar 

  4. Rosser, J.C., Lynch, P.J., Cuddihy, L., Gentile, D.A., Klonsky, J., Merrell, R.: The impact of video games on training surgeons in the 21st century. Archives of Surgery 142(2), 181–186 (2007)

    Article  Google Scholar 

  5. Montgomery, K., Bruyns, C., Brown, J., Sorkin, S., Mazzela, F., Thonier, G., Tellier, A., Lerman, B., Menon, A.: Spring: A general framework for collaborative, realtime surgical simulation. In: Medicine Meets Virtual Reality 2002, pp. 296–303. IOS Press, Amsterdam (2002)

    Google Scholar 

  6. Cavusoglu, M.C., Goktekin, T., Tendick, F.: Gipsi: A framework for open source/open architecture software development for organ-level surgical simulation. IEEE Transactions on Information Technology in Biomedicine 10(2), 312–322 (2006)

    Article  Google Scholar 

  7. Allard, J., Cotin, S., Faure, F., Bensoussan, P., Poyer, F., Duriez, C., Delingette, H., Grisoni, L.: Sofa - an open source framework for medical simulation. In: Medicine Meets Virtual Reality. IOS Press, Amsterdam (2007)

    Google Scholar 

  8. Joachim, G., Rüdiger, W.: Mass-spring systems on the gpu. Simulation Modelling Practice and Theory 13, 693–702 (2005)

    Article  Google Scholar 

  9. Mosegaard, J., Sorensen, T.: Gpu accelerated surgical simulators for complex morphology. In: Proceedings of the 2005 IEEE Conference on Virtual Reality, Washington, DC, USA, pp. 147–153. IEEE Computer Society, Los Alamitos (2005)

    Chapter  Google Scholar 

  10. Taylor, Z., Cheng, M., Ourselin, S.: High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Transactions on Medical Imaging 27(5), 650–663 (2008)

    Article  Google Scholar 

  11. Nealen, A., Muller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. In: Eurographics State of Art. (2005)

    Google Scholar 

  12. Pang, W.M., Qin, J., Chui, Y.P., Wong, T.T., Leung, K.S., Heng, P.A.: Orthopedics surgery trainer with ppu-accelerated blood and tissue simulation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 842–849. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Maciel, A., Halic, T., Lu, Z., Nedel, L.P., De, S.: Using the physx engine for physics-based virtual surgery with force feedback. The International Journal of Medical Robotics and Computer Assisted Surgery 5(3), 341–353 (2009)

    Article  Google Scholar 

  14. Louchen, J., Provot, X., Crochemore, D.: Evolutionary identification of cloth animation models. In: Proceedings of Eurographics Workshop on Computer Animation and Simulation, pp. 44–54 (1995)

    Google Scholar 

  15. Deussen, O., Kobbelt, L., Tucke, P.: Using simulated annealing to obtain good nodal approximations of deformable bodies. In: Proceedings of Eurographics Workshop on Computer Animation and Simulation, pp. 30–43 (1995)

    Google Scholar 

  16. Bianchi, G., Harders, M., Székely, G.: Mesh topology identification for mass-spring models. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 50–58. Springer, Heidelberg (2003)

    Google Scholar 

  17. Bianchi, G., Solenthaler, B., Szekely, G., Harders, M.: Simultaneous topology and stiffness identification for mass-spring models based on fem reference deformations. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 293–301. Springer, Heidelberg (2004)

    Google Scholar 

  18. Lloyd, B., Székely, G., Harders, M.: Identification of spring parameters for deformable object simulation. IEEE Transactions on Visualization and Computer Graphics 13(5), 1081–1094 (2007)

    Article  Google Scholar 

  19. Pailler-Mattei, C., Beca, S., Zahouani, H.: In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Medical Engineering and Physics 30(5), 599–606 (2008)

    Article  Google Scholar 

  20. Levinson, S.F., Shinagawa, M., Sato, T.: Sonoelastic determination of human skeletal muscle elasticity. Journal of Biomechanics 28(10), 1145–1154 (1995)

    Article  Google Scholar 

  21. Hong, M., Jung, S., Choi, M.H., Welch, S.W.J.: Fast volume preservation for a mass-spring system. IEEE Comput. Graph. Appl. 26(5), 83–91 (2006)

    Article  Google Scholar 

  22. Hong, M., Choi, M.-H., Jung, S., Welch, S., Trapp, J.: Effective constrained dynamic simulation using implicit constraint enforcement. In: International Conference on Robotics and Automation (April 2005)

    Google Scholar 

  23. Simpson, S.H., Menezes, G., Mardel, S.N., Kelly, S., White, R., Beattie, T.: A computer model of major haemorrhage and resuscitation. Med. Eng. Phys. 18(4), 339–343 (1996)

    Article  Google Scholar 

  24. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, Berlin (1993)

    Google Scholar 

  25. Libersky, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R., Allahdadi, F.A.: High strain lagrangian hydrodynamics: a three-dimensional sph code for dynamic material response. Journal of Computational Physics 109, 67–75 (1993)

    Article  MATH  Google Scholar 

  26. Monaghan, J.J.: Simulating free surface flows with sph. Journal of Computational Physics 110, 399–406 (1994)

    Article  MATH  Google Scholar 

  27. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of ACM SIGGRAPH Symposium on Computer Animation (SCA), pp. 154–159 (2003)

    Google Scholar 

  28. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: SIGGRAPH 1987 Proceedings, vol. 21(4) (July 1987)

    Google Scholar 

  29. Qin, J., Chui, Y.P., Pang, W.M., Choi, K.S., Heng, P.A.: Learning blood management in orthopedic surgery through gameplay. IEEE Computer Graphics and Applications 30, 45–57 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pang, WM., Qin, J., Chui, YP., Heng, PA. (2010). Fast Prototyping of Virtual Reality Based Surgical Simulators with PhysX-enabled GPU. In: Pan, Z., Cheok, A.D., Müller, W., Zhang, X., Wong, K. (eds) Transactions on Edutainment IV. Lecture Notes in Computer Science, vol 6250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14484-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14484-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14483-7

  • Online ISBN: 978-3-642-14484-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics