Skip to main content

A Joint Bayesian Framework for MR Brain Scan Tissue and Structure Segmentation Based on Distributed Markovian Agents

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 309))

Abstract

In most approaches, tissue and subcortical structure segmentations of MR brain scans are handled globally over the entire brain volume through two relatively independent sequential steps. We propose a fully Bayesian joint model that integrates within a multi-agent framework local tissue and structure segmentations and local intensity distribution modeling. It is based on the specification of three conditional Markov Random Field (MRF) models. The first two encode cooperations between tissue and structure segmentations and integrate a priori anatomical knowledge. The third model specifies a Markovian spatial prior over the model parameters that enables local estimations while ensuring their consistency, handling this way nonuniformity of intensity without any bias field modeling. The complete joint model provides then a sound theoretical framework for carrying out tissue and structure segmentations by distributing a set of local agents that estimate cooperatively local MRF models. The evaluation, using a previously affine-registered atlas of 17 structures, was performed using both phantoms and real 3T brain scans. It shows good results and in particular robustness to nonuniformity and noise with a low computational cost. The innovative coupling of agent-based and Markov-centered designs appears as a robust, fast and promising approach to MR brain scan segmentation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5), 856–876 (2001)

    Article  Google Scholar 

  2. Rajapakse, J.C., Giedd, J.N., Rapoport, J.L.: Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans. Med. Imag. 16(2), 176–186 (1997)

    Article  Google Scholar 

  3. Scherrer, B., Dojat, M., Forbes, F., Garbay, C.: LOCUS: LOcal Cooperative Unified Segmentation of MRI brain scans. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 1066–1074. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Scherrer, B., Forbes, F., Garbay, C., Dojat, M.: Distributed Local MRF Models for Tissue and Structure Brain Segmentation. IEEE Trans. Med. Imag. 28, 1296–1307 (2009)

    Article  Google Scholar 

  5. Scherrer, B., Forbes, F., Garbay, C., Dojat, M.: Fully Bayesian Joint Model for MR Brain Scan Tissue and Structure Segmentation. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1066–1074. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Byrne, W., Gunawardana, A.: Convergence theorems of Generalized Alternating Minimization Procedures. J. Machine Learning Research 6, 2049–2073 (2005)

    MathSciNet  Google Scholar 

  7. Shariatpanahi, H.F., Batmanghelich, N., Kermani, A.R.M., Ahmadabadi, M.N., Soltanian-Zadeh, H.: Distributed behavior-based multi-agent system for automatic segmentation of brain MR images. In: International Joint Conference on Neural Networks, IJCNN 2006 (2006)

    Google Scholar 

  8. Richard, N., Dojat, M., Garbay, C.: Distributed Markovian segmentation: Application to MR brain scans. Pattern Recognition 40(12), 3467–3480 (2007)

    Article  MATH  Google Scholar 

  9. Germond, L., Dojat, M., Taylor, C., Garbay, C.: A cooperative framework for segmentation of MRI brain scans. Artificial Intelligence in Medicine 20, 77–94 (2000)

    Article  Google Scholar 

  10. Scherrer, B., Dojat, M., Forbes, F., Garbay, C.: Agentification of Markov model based segmentation: Application to magnetic resonance brain scans. Artificial Intelligence in Medicine 46, 81–95 (2009)

    Article  Google Scholar 

  11. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley, Chichester (1996)

    Google Scholar 

  12. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. Chapman and Hall, Boca Raton (2004)

    MATH  Google Scholar 

  13. Lafferty, J., McCallum, A., Peirera, F.: Conditional Random Fields: Probabilistic models for segmenting and labelling sequence data. In: 18th Inter. Conf. on Machine Learning (2001)

    Google Scholar 

  14. Minka, T.: Discriminative models not discriminative training. Tech. Report MSR-TR-2005-144, Microsoft Research (2005)

    Google Scholar 

  15. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. In: Jordan, M.I. (ed.) Learning in Graphical Models, pp. 105–162. The MIT Press, Cambridge (1999)

    Google Scholar 

  16. Celeux, G., Forbes, F., Peyrard, N.: EM procedures using mean field-like approximations for Markov model-based image segmentation. Pat. Rec. 36, 131–144 (2003)

    Article  MATH  Google Scholar 

  17. Besag, J.: On the statistical analysis of dirty pictures. J. Roy. Statist. Soc. Ser. B 48(3), 259–302 (1986)

    MATH  MathSciNet  Google Scholar 

  18. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc. Ser. B 36(2), 192–236 (1974)

    MATH  MathSciNet  Google Scholar 

  19. Ashburner, J., Friston, K.J.: Unified Segmentation. NeuroImage 26, 839–851 (2005)

    Article  Google Scholar 

  20. Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13, 856–876 (2001)

    Article  Google Scholar 

  21. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction in MR images of the brain. IEEE Trans. Med. Imag. 18, 885–896 (1999)

    Article  Google Scholar 

  22. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)

    Article  Google Scholar 

  23. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the Expectation-Maximisation algorithm. IEEE Trans. Med. Imag. 20, 45–47 (2001)

    Article  Google Scholar 

  24. Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imag. 17, 463–468 (1998)

    Article  Google Scholar 

  25. Jenkinson, M., Smith, S.M.: A global optimisation method for robust affine registration of brain images. Medical Image Analysis 5, 143–156 (2001)

    Article  Google Scholar 

  26. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation. IEEE Trans. Med. Imag. 23, 903–921 (2004)

    Article  Google Scholar 

  27. Ciofolo, C., Barillot, C.: Atlas-based segmentation of 3d cerebral structures with competitive level sets and fuzzy control. Medical Image Analysis 13, 456–470 (2009)

    Article  Google Scholar 

  28. Pohl, K.M., Fisher, J., Grimson, E., Kikinis, R., Wells, W.: A Bayesian model for joint segmentation and registration. NeuroImage 31, 228–239 (2006)

    Article  Google Scholar 

  29. Scherrer, B., Forbes, F., Garbay, C., Dojat, M.: A Conditional Random Field approach for coupling local registration with robust tissue and structure segmentation. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 540–548. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., Kadie, C.: Dependency networks for inference, collaborative filtering and data visualization. J. Machine Learning Research 1, 49–75 (2000)

    Article  Google Scholar 

  31. Arnold, B.C., Castillo, E., Sarabia, J.M.: Conditionally specified distributions: an introduction. Statistical Science 16(3), 249–274 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scherrer, B., Forbes, F., Garbay, C., Dojat, M. (2010). A Joint Bayesian Framework for MR Brain Scan Tissue and Structure Segmentation Based on Distributed Markovian Agents. In: Bichindaritz, I., Vaidya, S., Jain, A., Jain, L.C. (eds) Computational Intelligence in Healthcare 4. Studies in Computational Intelligence, vol 309. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14464-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14464-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14463-9

  • Online ISBN: 978-3-642-14464-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics