Skip to main content

Analysis of Aerodynamic Indices for Racing Sailing Yachts: a Computational Study and Benchmark on up to 128 CPUs.

  • Conference paper
  • First Online:
Parallel Computational Fluid Dynamics 2008

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 74))

  • 2029 Accesses

Abstract

This work presents a feasibility study for trustable and affordable CFD analysis of aerodynamic indices of racing sailing yachts. A detailed reconstructed model of a recent America’s Cup class mainsail and asymmetrical spinnaker under light wind conditions has been studied using massive parallel RANS modeling on 128 CPUs. A detailed comparison between computational and experimental data has been performed and discussed, thanks to wind tunnel tests performed with the same geometry under the same wind conditions. The computational grid used was of about 37 millions of tetrahedra and the parallel job has been performed on up to 128 CPUs of a distributed memory Linux cluster using a commercial CFD code. An in deep analysis of the CPU usage has been performed during the computation by means of Ganglia and a complete benchmark of the studied case has been done for 64, 48, 32, 16, 8 and 4 CPUs analyzing the advantages offered by two kind of available interconnection technologies: Ethernet and Infiniband. Besides to this computational benchmark, a sensitivity analysis of the global aerodynamic force components, the lift and the drag, to different grid resolution size has been performed. In particular, mesh size across three orders of magnitude have been investigated: from 0.06 million up to 37 million cells. The computational results obtained here are in great agreement with the experimental data. In particular, the fully tetrahedral meshes allow appreciating the beneficial effect of the increasing of the grid resolution without changing grid topology: a converging trend to the experimental value is observed. In conclusion, the present results confirm the validity of RANS modeling as a design tool and show the advantages and costs of a large tetrahedral mesh for downwind sail design purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H. Milgram: The Aeodynamic of Sails; proceedings of 7th Symposium of Naval Hydrodynamic, pp. 1397-1434, 1968.

    Google Scholar 

  2. Arvel Gentry: The Application of Computational Fluid Dynamics to Sails; Proceedings of the Symposium on Hydrodynamic Peformance Enhancement for Marine Applications, Newport, Rhode Island, US, 1988.

    Google Scholar 

  3. H. Miyata, Y.W. Lee. Application of CFD Simulation to the Design of Sails. Journal of Marine Science and Technology, 4:163-172, 1999.

    Article  Google Scholar 

  4. A.B.G. Querard and P.A. Wilson. Aerodynamic of Modern Square Head Sails: a Comparative Study Between Wind-Tunnel Experiments and RANS Simulations. In the Modern Yacht, Southampton, UK, 11-12 Oct 2007. London, UK, The Royal Institution of Naval Architects, 8 pp. 107-114, 2007. http://eprints.soton.ac.uk/49314/.

  5. P.J. Richards, A. Johnson, A. Stanton: America’s Cup downwind sails - vertical wings or horizontal parachutes?; Journal of Wind Engineering and Industrial Aerodynamics, 89:1565–1577, 2001.

    Article  Google Scholar 

  6. William C. Lasher, James R. Sonnenmeier, David R. Forsman, Jason Tomcho: The aerodynamics of symmetric spinnakers; Journal of Wind Engineering and Industrial Aerodynamics, 93:311-337, 2005.

    Article  Google Scholar 

  7. K.L. Hedges: Computer Modelling of Downwind Sails; MF Thesis, University of Auckland, New Zealand, 1993.

    Google Scholar 

  8. K.L. Hedges, P.J. Richards, G.D. Mallison: Computer Modelling of Downwind Sails; Journal of Wind Engineering and Industrial Aerodynamics 63 95-110, 1996.

    Article  Google Scholar 

  9. William C. Lasher and Peter J. Richards: Validation of Reynolds-Averaged Navier-Stokes Simulations for International America’s Cup Class Spinnaker Force Coefficients in an Atmospheric Boundary Layer; Journal of Ship Research, Vol. 51, No. 1, pp. 22–38, March 2007.

    Google Scholar 

  10. William Lascher & James R. Sonnenmeier: An Analysis of Practical RANS Simulations for Spinnaker Aerodynamics; Journal of Wind Engineering and Industrial Aerodynamics, 96 143–165, 2008.

    Article  Google Scholar 

  11. Challenger of Record and Defender for America’s Cup XXXII: America’s Cup Class Rule, Version 5.0; 15th December 2003;

    Google Scholar 

  12. F. Fossati, S. Muggiasca, I.M. Viola, A. Zasso: Wind Tunnel Techniques for Investigation and Optimization of Sailing Yachts Aerodynamics; proceedings of 2nd High Performance Yacht Design Conference; Auckland, NZ, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Maria Viola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this paper

Cite this paper

Viola, I.M., Ponzini, R., Rocchi, D., Fossati, F. (2010). Analysis of Aerodynamic Indices for Racing Sailing Yachts: a Computational Study and Benchmark on up to 128 CPUs.. In: Tromeur-Dervout, D., Brenner, G., Emerson, D., Erhel, J. (eds) Parallel Computational Fluid Dynamics 2008. Lecture Notes in Computational Science and Engineering, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14438-7_6

Download citation

Publish with us

Policies and ethics