Skip to main content

Development and Structure of Lymph Nodes in Humans and Mice

  • Chapter
  • First Online:
Developmental Biology of Peripheral Lymphoid Organs

Abstract

Throughout the human body, 500–600 lymph nodes are situated. These secondary lymphoid organs collect antigens from peripheral tissues via the afferent lymphatics and provide T and B lymphocytes with the optimal environment for cellular activation and proliferation. In this chapter, we will highlight the interactions between hematopoietic cells and stromal cells that are essential for the proper formation and organization of the lymph node. In addition, the distinct cellular architecture that is characteristic for secondary lymphoid organs as well as its vascular system will be discussed in the context of lymph node function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi S, Yoshida H, Honda K, Maki K, Saijo K, Ikuta K, Saito T, Nishikawa SI (1998) Essential role of IL-7 receptor alpha in the formation of Peyer’s patch anlage. Int Immunol 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Alimzhanov MB, Kuprash DV, Kosco-Vilbois MH, Luz A, Turetskaya RL, Tarakhovsky A, Rajewsky K, Nedospasov SA, Pfeffer K (1997) Abnormal development of secondary lymphoid tissues in lymphotoxin beta-deficient mice. Proc Natl Acad Sci USA 94:9302–9307

    Article  PubMed  CAS  Google Scholar 

  • Allen CDC, Okada T, Cyster JG (2007) Germinal-center organization and cellular dynamics. Immunity 27:190–202

    Article  PubMed  CAS  Google Scholar 

  • Ame-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-Maugendre S, Guillaudeux T, Lamy T, Fest T, Tarte K (2007) Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood 109:693–702

    Article  PubMed  CAS  Google Scholar 

  • Ansel KM, Ngo VN, Hyman PL, Luther SA, Förster R, Sedgwick J, Browning JL, Lipp M, Cyster JG (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406:309–314

    Article  PubMed  CAS  Google Scholar 

  • Bajénoff M, Egen JG, Koo LY, Laugier Jean P, Brau F, Glaichenhaus N, Germain RN (2006) Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph NODES. Immunity 25:989–1001

    Article  PubMed  CAS  Google Scholar 

  • Banks TA, Rouse BT, Kerley MK, Blair PJ, Godfrey VL, Kuklin NA, Bouley DM, Thomas J, Kanangat S, Mucenski ML (1995) Lymphotoxin-alpha-deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness. J Immunol 155:1685–1693

    PubMed  CAS  Google Scholar 

  • Boos MD, Yokota Y, Eberl G, Kee BL (2007) Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J Exp Med 204:1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Carrasco YR, Batista FD (2007) B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27(1):160–171

    Article  PubMed  CAS  Google Scholar 

  • Coles MC, Veiga-Fernandes H, Foster KE, Norton T, Pagakis SN, Seddon B, Kioussis D (2006) Role of T and NK cells and IL7/IL7r interactions during neonatal maturation of lymph nodes. Proc Natl Acad Sci USA 103:13457–13462

    Article  PubMed  CAS  Google Scholar 

  • Crivellato E, Vacca A, Ribatti D (2004) Setting the stage: an anatomist’s view of the immune system. Trends Immunol 25:210–217

    Article  PubMed  CAS  Google Scholar 

  • Cupedo T, Crellin NK, Papazian N, Rombouts EJ, Weijer K, Grogan JL, Fibbe WE, Cornelissen JJ, Spits H (2009) Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol 10:66–74

    Article  PubMed  CAS  Google Scholar 

  • Cupedo T, Lund FE, Ngo VN, Randall TD, Jansen W, Greuter MJ, de Waal-Malefyt R, Kraal G, Cyster JG, Mebius RE (2004) Initiation of cellular organization in lymph nodes is regulated by non-B cell-derived signals and is not dependent on CXC chemokine ligand 13. J Immunol 173:4889–4896

    PubMed  CAS  Google Scholar 

  • Czeloth N, Bernhardt G, Hofmann F, Genth H, Forster R (2005) Sphingosine-1-phosphate mediates migration of mature dendritic cells. J Immunol 175:2960–2967

    PubMed  CAS  Google Scholar 

  • De Togni P, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S, Smith SC, Carlson R, Shornick LP, Strauss-Schoenberger J et al (1994) Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264:703–707

    Article  PubMed  CAS  Google Scholar 

  • Dudda JC, Martin SF (2004) Tissue targeting of T cells by DCs and microenvironments. Trends Immunol 25:417–421

    Article  PubMed  CAS  Google Scholar 

  • Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR (2004) An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5:64–73

    Article  PubMed  CAS  Google Scholar 

  • Endres R, Alimzhanov MB, Plitz T, Fütterer A, Kosco-Vilbois MH, Nedospasov SA, Rajewsky K, Pfeffer K (1999) Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells. J Exp Med 189:159–168

    Article  PubMed  CAS  Google Scholar 

  • Facchetti F, Blanzuoli L, Ungari M, Alebardi O, Vermi W (1998) Lymph node pathology in primary combined immunodeficiency diseases. Springer Semin Immunopathol 19:459–478

    Article  PubMed  CAS  Google Scholar 

  • Forster R, Davalos-Misslitz AC, Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8:362–371

    Article  PubMed  CAS  Google Scholar 

  • Fu YX, Chaplin DD (1999) Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 17:399–433

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama S, Hiroi T, Yokota Y, Rennert PD, Yanagita M, Kinoshita N, Terawaki S, Shikina T, Yamamoto M, Kurono Y, Kiyono H (2002) Initiation of NALT Organogenesis Is Independent of the IL-7R, LTbR, and NIK Signaling Pathways but Requires the Id2 Gene and CD3-CD4+CD45+ Cells. Immunity 17:31–40

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez M, Mackay F, Browning JL, Kosco-Vilbois MH, Noelle RJ (1998) The sequential role of lymphotoxin and B cells in the development of splenic follicles. J. Exp Med 187:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Greter M, Hofmann J, Becher B (2009) Neo-lymphoid aggregates in the adult liver can initiate potent cell-mediated immunity. PLoS Biol 7:e1000109

    Article  PubMed  CAS  Google Scholar 

  • Gretz JE, Anderson AO, Shaw S (1997) Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol Rev 156:11–24

    Article  PubMed  CAS  Google Scholar 

  • Gretz JE, Norbury CC, Anderson AO, Proudfoot AEI, Shaw S (2000) Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J Exp Med 192:1425–1440

    Article  PubMed  CAS  Google Scholar 

  • Hashi H, Yoshida H, Honda K, Fraser S, Kubo H, Awane M, Takabayashi A, Nakano H, Yamaoka Y, Nishikawa SI (2001) Compartmentalization of peyer’s patch anlagen before lymphocyte entry. J Immunol 166:3702–3709

    PubMed  CAS  Google Scholar 

  • Honda K, Nakano H, Yoshida H, Nishikawa S, Rennert P, Ikuta K, Tamechika M, Yamaguchi K, Fukumoto T, Chiba T, Nishikawa SI (2001) Molecular basis for hematopoietic/mesenchymal interaction during initiation of peyer’s patch organogenesis. J Exp Med 193:621–630

    Article  PubMed  CAS  Google Scholar 

  • Huang JH, Cardenas-Navia LI, Caldwell CC, Plumb TJ, Radu CG, Rocha PN, Wilder T, Bromberg JS, Cronstein BN, Sitkovsky M, Dewhirst MW, Dustin ML (2007) Requirements for T lymphocyte migration in explanted lymph nodes. J Immunol 178:7747–7755

    PubMed  CAS  Google Scholar 

  • Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA, Boes M, Fink K, Henrickson SE, Shayakhmetov DM, Di Paolo NC, van Rooijen N, Mempel TR, Whelan SP, von Andrian UH (2007) Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450:110–114

    Article  PubMed  CAS  Google Scholar 

  • Kasajima-Akatsuka N, Maeda K (2006) Development, maturation and subsequent activation of follicular dendritic cells (FDC): immunohistochemical observation of human fetal and adult lymph nodes. Histochem Cell Biol 126:261–273

    Article  PubMed  CAS  Google Scholar 

  • Katakai T, Hara T, Lee J-H, Gonda H, Sugai M, Shimizu A (2004) A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells. Int Immunol 16:1133–1142

    Article  PubMed  CAS  Google Scholar 

  • Katakai T, Hara T, Sugai M, Gonda H, Shimizu A (2004b) Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J Exp Med 200:783–795

    Article  PubMed  CAS  Google Scholar 

  • Katakai T, Suto H, Sugai M, Gonda H, Togawa A, Suematsu S, Ebisuno Y, Katagiri K, Kinashi T, Shimizu A (2008) Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. J Immunol 181:6189–6200

    PubMed  CAS  Google Scholar 

  • Kelly KA, Scollay R (1992) Seeding of neonatal lymph nodes by T cells and identification of a novel population of CD3-/CD4+ cells. Eur J Immunol 22:329–334

    Article  PubMed  CAS  Google Scholar 

  • Kelsoe G (1996) Life and death in germinal centers (redux). Immunity 4:107–111

    Article  PubMed  CAS  Google Scholar 

  • Kim MY, Gaspal FM, Wiggett HE, McConnell FM, Gulbranson-Judge A, Raykundalia C, Walker LS, Goodall MD, Lane PJ (2003) CD4(+)CD3(-) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18:643–654

    Article  PubMed  CAS  Google Scholar 

  • Kirby AC, Coles MC, Kaye PM (2009) Alveolar macrophages transport pathogens to lung draining lymph nodes. J Immunol 183:1983–1989

    Article  PubMed  CAS  Google Scholar 

  • Klein U, Dalla-Favera R (2008) Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 8:22–33

    Article  PubMed  CAS  Google Scholar 

  • Ledgerwood LG, Lal G, Zhang N, Garin A, Esses SJ, Ginhoux F, Merad M, Peche H, Lira SA, Ding Y, Yang Y, He X, Schuchman EH, Allende ML, Ochando JC, Bromberg JS (2008) The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat Immunol 9:42–53

    Article  PubMed  CAS  Google Scholar 

  • Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, Cyster JG, Luther SA (2007) Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 8:1255–1265

    Article  PubMed  CAS  Google Scholar 

  • Luther SA, Ansel KM, Cyster JG (2003) Overlapping roles of CXCL13, interleukin 7 receptor {alpha}, and CCR7 ligands in lymph node development. J Exp Med 197:1191–1198

    Article  PubMed  CAS  Google Scholar 

  • Luther SA, Tang HL, Hyman PL, Farr AG, Cyster JG (2000) Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci USA 97:12694–12699

    Article  PubMed  CAS  Google Scholar 

  • Maddaluno L, Verbrugge SE, Martinoli C, Matteoli G, Chiavelli A, Zeng Y, Williams ED, Rescigno M, Cavallaro U (2009) The adhesion molecule L1 regulates transendothelial migration and trafficking of dendritic cells. J Exp Med 206:623–635

    Article  PubMed  CAS  Google Scholar 

  • Mebius RE (2003) Organogenesis of lymphoid tissues. Nat Rev Immunol 3:292–303

    Article  PubMed  CAS  Google Scholar 

  • Mebius RE, Breve J, Kraal G, Streeter PR (1993) Developmental regulation of vascular addressin expression: a possible role for site-associated environments. Int Immunol 5:443–449

    Article  PubMed  CAS  Google Scholar 

  • Mebius RE, Miyamoto T, Christensen J, Domen J, Cupedo T, Weissman IL, Akashi K (2001) The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3- cells, as well as macrophages. J Immunol 166:6593–6601

    PubMed  CAS  Google Scholar 

  • Mebius RE, Rennert P, Weissman IL (1997) Developing lymph nodes collect CD4+CD3-LTb+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7:493–504

    Article  PubMed  CAS  Google Scholar 

  • Mebius RE, Schadee-Eestermans IL, Weissman IL (1998) MAdCAM-1 dependent colonization of developing lymph nodes involves a unique subset of CD4+CD3- hematolymphoid cells. Cell Adhes Commun 6:97–103

    Article  PubMed  CAS  Google Scholar 

  • Mebius RE, Streeter PR, Michie S, Butcher EC, Weissman IL (1996) A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3- cells to colonize lymph nodes. Proc Natl Acad Sci USA 93:11019–11024

    Article  PubMed  CAS  Google Scholar 

  • Mora JR, von Andrian UH (2006) T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol 27:235–243

    Article  PubMed  CAS  Google Scholar 

  • Mueller SN, Germain RN (2009) Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 9:618–629

    PubMed  CAS  Google Scholar 

  • Mueller SN, Hosiawa-Meagher KA, Konieczny BT, Sullivan BM, Bachmann MF, Locksley RM, Ahmed R, Matloubian M (2007) Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317:670–674

    Article  PubMed  CAS  Google Scholar 

  • Ohl L, Henning G, Krautwald S, Lipp M, Hardtke S, Bernhardt G, Pabst O, Forster R (2003) Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J Exp Med 197:1199–1204

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Ngo VN, Ekland EH, Forster R, Lipp M, Littman DR, Cyster JG (2002) Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. J Exp Med 196:65–75

    Article  PubMed  CAS  Google Scholar 

  • Pahal GS, Jauniaux E, Kinnon C, Thrasher AJ, Rodeck CH (2000) Normal development of human fetal hematopoiesis between eight and seventeen weeks’ gestation. Am J Obstet Gynecol 183:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Pape KA, Catron DM, Itano AA, Jenkins MK (2007) The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 26:491–502

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Saijo K, Takahashi T, Osawa M, Arase H, Hirayama N, Miyake K, Nakauchi H, Shirasawa T, Saito T (1995) Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 3:771–782

    Article  PubMed  CAS  Google Scholar 

  • Pham TH, Okada T, Matloubian M, Lo CG, Cyster JG (2008) S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity 28:122–133

    Article  PubMed  CAS  Google Scholar 

  • Phan TG, Grigorova I, Okada T, Cyster JG (2007) Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol 8:992–1000

    Article  PubMed  CAS  Google Scholar 

  • Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Forster R, Cyster JG (2002) Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416:94–99

    Article  PubMed  Google Scholar 

  • Rennert PD, Browning JL, Mebius R, Mackay F, Hochman PS (1996) Surface lymphotoxin alpha/beta complex is required for the development of peripheral lymphoid organs. J Exp Med 184:1999–2006

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal R, Mempel TR, Pitcher LA, Gonzalez SF, Verschoor A, Mebius RE, von Andrian UH, Carroll MC (2009) Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30:264–276

    Article  PubMed  CAS  Google Scholar 

  • Scandella E, Bolinger B, Lattmann E, Miller S, Favre S, Littman DR, Finke D, Luther SA, Junt T, Ludewig B (2008) Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat Immunol 9:667–675

    Article  PubMed  CAS  Google Scholar 

  • Schmidlin H, Diehl SA, Blom B (2009) New insights into the regulation of human B-cell differentiation. Trends Immunol 30:277–285

    Article  PubMed  CAS  Google Scholar 

  • Schmutz S, Bosco N, Chappaz S, Boyman O, Acha-Orbea H, Ceredig R, Rolink AG, Finke D (2009) Cutting edge: IL-7 regulates the peripheral pool of adult ROR{gamma}+ lymphoid tissue inducer cells. J Immunol 183:2217–2221

    Article  PubMed  CAS  Google Scholar 

  • Schwab SR, Cyster JG (2007) Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol 8:1295–1301

    Article  PubMed  CAS  Google Scholar 

  • Shiow LR, Rosen DB, Brdickova N, Xu Y, An J, Lanier LL, Cyster JG, Matloubian M (2006) CD69 acts downstream of interferon-[alpha]/[beta] to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440:540–544

    Article  PubMed  CAS  Google Scholar 

  • Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, Pabst R, Lutz MB, Sorokin L (2005) The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:19–29

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, Mebius RE, Littman DR (2000) Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288:2369–2373

    Article  PubMed  CAS  Google Scholar 

  • Tsuji M, Suzuki K, Kitamura H, Maruya M, Kinoshita K, Ivanov II, Itoh K, Littman DR, Fagarasan S (2008) Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 29:261–271

    Article  PubMed  CAS  Google Scholar 

  • van de Pavert SA, Olivier BJ, Goverse G, Vondenhoff MF, Greuter M, Beke P, Kusser K, Hopken UE, Lipp M, Niederreither K, Blomhoff R, Sitnik K, Agace WW, Randall TD, de Jonge WJ, Mebius RE (2009) Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat Immunol 10:1193–1199

    Article  PubMed  CAS  Google Scholar 

  • van Nierop K, de Groot C (2002) Human follicular dendritic cells: function, origin and development. Semin Immunol 14:251–257

    Article  PubMed  CAS  Google Scholar 

  • Villablanca EJ, Mora JR (2008) A two-step model for Langerhans cell migration to skin-draining LN. Eur J Immunol 38:2975–2980

    Article  PubMed  CAS  Google Scholar 

  • Vondenhoff MF, Greuter M, Goverse G, Elewaut D, Dewint P, Ware CF, Hoorweg K, Kraal G, Mebius RE (2009a) LT{beta}R signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. J Immunol 182:5439–5445

    Article  PubMed  CAS  Google Scholar 

  • Vondenhoff MF, van de Pavert SA, Dillard ME, Greuter M, Goverse G, Oliver G, Mebius RE (2009b) Lymph sacs are not required for the initiation of lymph node formation. Development 136:29–34

    Article  PubMed  CAS  Google Scholar 

  • Westerga J, Timens W (1989) Immunohistological analysis of human fetal lymph nodes. Scand J Immunol 29:103–112

    Article  PubMed  CAS  Google Scholar 

  • White A, Carragher D, Parnell S, Msaki A, Perkins N, Lane P, Jenkinson E, Anderson G, Caamano JH (2007) Lymphotoxin a-dependent and -independent signals regulate stromal organizer cell homeostasis during lymph node organogenesis. Blood 110:1950–1959

    Article  PubMed  CAS  Google Scholar 

  • Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–778

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Honda K, Shinkura R, Adachi S, Nishikawa S, Maki K, Ikuta K, Nishikawa SI (1999) IL-7 receptor alpha+ CD3(-) cells in the embryonic intestine induces the organizing center of Peyer’s patches. Int Immunol 11:643–655

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Naito A, Inoue J, Satoh M, Santee-Cooper SM, Ware CF, Togawa A, Nishikawa S (2002) Different cytokines induce surface lymphotoxin-alphabeta on IL-7 receptor-alpha cells that differentially engender lymph nodes and Peyer’s patches. Immunity 17:823–833

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Cupedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Cupedo, T., Coles, M.C., Veiga-Fernandes, H. (2011). Development and Structure of Lymph Nodes in Humans and Mice. In: Balogh, P. (eds) Developmental Biology of Peripheral Lymphoid Organs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14429-5_7

Download citation

Publish with us

Policies and ethics