Skip to main content

Type IV (P4) and V (P5) P-ATPases in Lipid Translocation and Membrane Trafficking

  • Chapter
  • First Online:
  • 1712 Accesses

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 7))

Abstract

The least investigated members of the P-type superfamily of primary active pumps belong to the type IV and V subfamilies, which are unique to eukaryotic organisms. Although accumulating data indicates a central role for these transporters in the secretory pathway, very little is known about their biochemical properties or regulation. In fact, even the transported substrate is a matter of intense debate. In this chapter, present knowledge concerning the role of P4- and P5-type pumps in lipid transport and membrane trafficking will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alder-Baerens N, Lisman Q, Luong L, Pomorski T, Holthuis JC (2006) Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles. Mol Biol Cell 17:1632–1642

    Article  PubMed  CAS  Google Scholar 

  • Ando A, Suzuki C (2005) Cooperative function of the CHD5-like protein Mdm39p with a P-type ATPase Spf1p in the maintenance of ER homeostasis in Saccharomyces cerevisiae. Mol Genet Genomics 273:497–506

    Article  PubMed  CAS  Google Scholar 

  • Argüello JM, Eren E, González-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248

    Article  PubMed  Google Scholar 

  • Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101

    Article  PubMed  CAS  Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    Article  PubMed  CAS  Google Scholar 

  • Ballal A, Basu B, Apte SK (2007) The Kdp-ATPase system and its regulation. J Biosci 32:559–568

    Article  PubMed  CAS  Google Scholar 

  • Benschop JJ, Mohammed S, O'Flaherty M, Heck AJ, Slijper M, Menke FL (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6:1198–1214

    Article  PubMed  CAS  Google Scholar 

  • Boursiac Y, Harper JF (2007) The origin and function of calmodulin regulated Ca2+ pumps in plants. J Bioenerg Biomembr 39:409–414

    Article  PubMed  CAS  Google Scholar 

  • Catty P, de Kerchove d'Exaerde A, Goffeau A (1997) The complete inventory of the yeast Saccharomyces cerevisiae P-type transport ATPases. FEBS Lett 409:325–332

    Article  PubMed  CAS  Google Scholar 

  • Chantalat S, Park SK, Hua Z, Liu K, Gobin R, Peyroche A, Rambourg A, Graham TR, Jackson CL (2004) The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. J Cell Sci 117:711–722

    Article  PubMed  CAS  Google Scholar 

  • Chen C-Y, Ingram MF, Rosal PH, Graham TR (1999) Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. J Cell Biol 147:1223–1236

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Wang J, Muthusamy BP, Liu K, Zare S, Andersen RJ, Graham TR (2006) Roles for the Drs2p–Cdc50p complex in protein transport and phosphatidylserine asymmetry of the yeast plasma membrane. Traffic 7:1503–1517

    Article  PubMed  CAS  Google Scholar 

  • Coleman JA, Kwok MCM, Molday RS (2009) Localization, purification, and functional reconstitution of the P4-ATPase Atp8a2, a phosphatidylserine flippase in photoreceptor disc membranes. J Biol Chem 28:32670–32679

    Article  Google Scholar 

  • Cronin SR, Khoury A, Ferry DK, Hampton RY (2000) Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p. J Cell Biol 148:915–923

    Article  PubMed  CAS  Google Scholar 

  • Cronin SR, Rao R, Hampton RY (2002) Cod1p/Spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis. J Cell Biol 157:1017–1028

    Article  PubMed  CAS  Google Scholar 

  • Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci USA 103:6518–6523

    Article  PubMed  CAS  Google Scholar 

  • Façanha AL, Appelgren H, Tabish M, Orokov L, Ekwall E (2002) The endoplasmic reticulum cation P-type ATPase Cta4p is required for control of cell shape and microtubule dynamics. J Cell Biol 157:1029–1039

    Article  PubMed  Google Scholar 

  • Froehlich JE, Wilkerson CG, Ray WK, McAndrew RS, Osteryoung KW, Gage DA, Phinney BS (2003) Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J Proteome Res 2:413–425

    Article  PubMed  Google Scholar 

  • Furune T, Hashimoto K, Ishiguro J (2008) Characterization of a fission yeast P-5-type ATPase homologue that is essential for Ca2+/Mn2+ homeostasis in the absence of P-2-type ATPases. Genes Genet Syst 83:373–381

    Article  PubMed  CAS  Google Scholar 

  • Furuta N, Fujimura-Kamada K, Saito K, Yamamoto T, Tanaka K (2007) Endocytic recycling in yeast is regulated by putative phospholipid translocases and the Ypt31p/32p-Rcy1p pathway. Mol Biol Cell 18:295–312

    Article  PubMed  CAS  Google Scholar 

  • Genevestigator (2008) NEBION/ETH Zurich. https://www.genevestigator.com/gv/index.jsp. Cited 23 March 2010

  • Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Caldwell GA et al (2009) Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 41:308–315

    Article  PubMed  CAS  Google Scholar 

  • Glynn IM (2002) A hundred years of sodium pumping. Annu Rev Physiol 64:1–18

    Article  PubMed  CAS  Google Scholar 

  • Gomes E, Jakobsen MK, Axelsen KB, Geisler M, Palmgren MG (2000) Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative aminophospholipid translocases. Plant Cell 12:2441–2454

    PubMed  CAS  Google Scholar 

  • Halleck MS, Pradhan D, Blackman C, Berkes C, Williamson P, Schlegel RA (1998) Multiple members of a third subfamily of P-type ATPases identified by genomic sequences and ESTs. Genome Res 8:354–361

    PubMed  CAS  Google Scholar 

  • Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH (2007) SUBA: the Arabidopsis subcellular database. Nucleic Acids Res 35:D213–D218

    Article  PubMed  CAS  Google Scholar 

  • Hua Z, Graham TR (2003) Requirement for Neo1p in retrograde transport from the Golgi complex to the endoplasmic reticulum. Mol Biol Cell 13:3162–3177

    Article  Google Scholar 

  • Hua Z, Fatheddin P, Graham TR (2002) An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. Mol Biol Cell 13:3162–3177

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen MK, Poulsen LR, Schulz A, Fleurat-Lessard P, Møller A, Husted S, Schiøtt S, Amtmann A, Palmgren MG (2005) Pollen development and fertilization in Arabidopsis is dependent on the male gametogenesis impaired anthers gene encoding a Type V P-type ATPase. Genes Dev 19:2757–2769

    Article  PubMed  CAS  Google Scholar 

  • Lenoir G, Williamson P, Puts CF, Holthuis JCM (2009) Cdc50p plays a vital role in the ATPase reaction cycle of the putative aminophospholipid transporter Drs2p. J Biol Chem 284:17956–17967

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Surendhran K, Nothwehr SF, Graham TR (2008) P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes. Mol Biol Cell 19:3526–3535

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Marques RL, Poulsen LR, Hanisch S, Meffert K, Buch-Pedersen MJ, Jakobsen MK, Pomorski TG, Palmgren MG (2010) Intracellular targeting signals and lipid specificity determinants of the ALA/ALIS P4-ATPase complex reside in the catalytic ALA α-subunit. Mol Biol Cell 21:791–801

    Article  PubMed  CAS  Google Scholar 

  • Møller AB, Asp T, Holm PB, Palmgren MG (2007) Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps. Mol Phylogenet Evol 46:619–634

    Article  PubMed  Google Scholar 

  • Morth JP, Pedersen BP, Toustrup-Jensen MS, Sørensen TL-M, Petersen J, Andersen J, Vilsen B, Nissen P (2007) Crystal structure of the sodium-potassium pump. Nature 450:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Muthusamy BP, Natarajan P, Zhou X, Graham TR (2009) Linking phospholipid flippases to vesicle-mediated protein transport. Biochim Biophys Acta 1791(7):612–619

    Article  PubMed  CAS  Google Scholar 

  • Natarajan P, Wang J, Hua Z, Graham TR (2004) Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc Natl Acad Sci USA 101:10614–10619

    Article  PubMed  CAS  Google Scholar 

  • Natarajan P, Liu K, Patil DV, Sciorra VA, Jackson CL, Graham TR (2009) Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nat Cell Biol 11:1421–1426

    Article  PubMed  CAS  Google Scholar 

  • Natera SHA, Ford KL, Cassin AM, Patterson JH, Newbigin EJ, Bacic A (2008) Analysis of the Oryza sativa plasma membrane proteome using combined protein and peptide fractionation approaches in conjunction with mass spectrometry. J Proteome Res 7:1159–1187

    Article  PubMed  CAS  Google Scholar 

  • Ng TW, Spear ED, Walter P (2000) The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J Cell Biol 150:77–88

    Article  PubMed  CAS  Google Scholar 

  • Nühse TS, Stensballe A, Jensen ON, Peck SC (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2:1234–1243

    Article  PubMed  Google Scholar 

  • Nühse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405

    Article  PubMed  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35(Database issue):D883–D887

    Article  Google Scholar 

  • Paulusma CC, Folmer DE, Ho-Mok KS, de Waart DR, Hilarius PM, Verhoeven AJ, Oude Elferink RP (2008) ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology 47:268–278

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BP, Buch-Pedersen MJ, Morth P, Palmgren MG, Nissen P (2007) Crystal structure of the plasma membrane proton pump. Nature 450:1111–1115

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Victoria FJ, Sánchez-Cañete MP, Castanys S, Gamarro F (2006) Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J Biol Chem 281:23766–23775

    Article  PubMed  Google Scholar 

  • Pomorski T, Lombardi R, Riezman H, Devaux PF, van Meer G, Holthuis JCM (2003) Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell 14:1240–1254

    Article  PubMed  CAS  Google Scholar 

  • Poulsen LR, López-Marqués RL, McDowell SC, Okkeri J, Licht D, Schulz A, Pomorski T, Harper JF, Palmgren MG (2008a) The Arabidopsis P4-ATPase ALA3 localizes to the golgi and requires a β-subunit to function in lipid translocation and secretory vesicle formation. Plant Cell 20:658–676

    Article  PubMed  CAS  Google Scholar 

  • Poulsen LR, López-Marqués RL, Palmgren MG (2008b) Flippases: still more questions than answers. Cell Mol Life Sci 65:3119–3125

    Article  PubMed  CAS  Google Scholar 

  • Puts CF, Holthius JCM (2009) Mechanism and significance of P4 ATPase-catalyzed lipid transport: Lessons from a Na+/K+-pump. Biochim Biophys Acta 1791:603–611

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Fujimura-Kamada K, Furuta N, Kato U, Umeda M, Tanaka K (2004) Cdc50p, a protein required for polarized growth, associates with the Drs2p P-Type ATPase implicated in phospholipid translocation in Saccharomyces cerevisiae. Mol Biol Cell 15:3418–3432

    Article  PubMed  CAS  Google Scholar 

  • Schmidt K, Wolfe DM, Stiller B, Pearce DA (2009) Cd2+, Mn2+, Ni2+ and Se2+ toxicity to Saccharomyces cereviosiae lacking YPK9p the orthologue of human ATP13A2. Biochem Biophys Res Commun 383:198–202

    Article  PubMed  CAS  Google Scholar 

  • Shinoda T, Ogawa H, Cornelius F, Toyoshima C (2009) Crystal structure of the sodium–potassium pump at 2.4 Å resolution. Nature 459(7245):446–450

    Article  PubMed  CAS  Google Scholar 

  • Singer-Kruger B, Lasic M, Burger AM, Hausser A, Pipkorn R, Wang Y (2008) Yeast and human Ysl2p/hMon2 interact with Gga adaptors and mediate their subcellular distribution. EMBO J 27:1423–1435

    PubMed  Google Scholar 

  • Suzuki C (2001) Immunochemical and mutational analysis of P-type ATPase spf1p involved in the yeast secretory pathway. Biosci Biotechnol Biochem 11:2405–2411

    Article  Google Scholar 

  • Suzuki C, Shimma YI (1999) P-type ATPase spf1 mutants show a novel resistance mechanism for the killer toxin SMKT. Mol Microbiol 32(4):813–823

    Article  PubMed  CAS  Google Scholar 

  • Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Physiol Plant Mol Biol 51:433–462

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Halleck MS, Schlegel RA, Williamson P (1996) A subfamily of P-type ATPases with aminophospholipid transporting activity. Science 272:1495–1497

    Article  PubMed  CAS  Google Scholar 

  • Thever MD, Saier MH (2009) Bioinformatic Characterization of P-type ATPases encoded within the fully sequenced genomes of 26 eukaryotes. J Membr Biol 229:115–130

    Article  PubMed  CAS  Google Scholar 

  • Ticconi CA, Lucero RD, Sakhonwasee S, Adamson AW, Creff A, Nussaume L, Desnos T, Abel S (2009) ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proc Natl Acad Sci USA 106:14174–14179

    Article  PubMed  CAS  Google Scholar 

  • Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368

    Article  PubMed  CAS  Google Scholar 

  • Tong AH, Lesage G, Bader GD, Ding H et al (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6Å resolution. Nature 405:647–655

    Article  PubMed  CAS  Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analysis reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  PubMed  CAS  Google Scholar 

  • Vashist S, Frank CG, Jakob CA, Ng DTW (2002) Two distinctly localized P-Type ATPases collaborate to maintain organelle homeostasis required for glycoprotein processing and quality control. Mol Biol Cell 21:3955–3966

    Article  Google Scholar 

  • Whiteman SA, Serazetdinova L, Jones AM, Sanders D, Rathjen J, Peck SC, Maathuis FJ (2008) Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana. Proteomics 8:3536–3547

    Article  PubMed  CAS  Google Scholar 

  • Wicky S, Schwarz H, Singer-Krüger B (2004) Molecular interactions of yeast Neo1p, an essential member of the Drs2 family of aminophospholipid translocases, and its role in membrane trafficking within the endomembrane system. Mol Cell Biol 24:7402–7418

    Article  PubMed  CAS  Google Scholar 

  • Yadav J, Muend S, Zhang Y, Rao R (2007) A phenomics approach in yeast links proton and calcium pump function in the Golgi. Mol Biol Cell 18:1480–1489

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Oppenheimer DG (2009) Irregular trichome branch 2 (ITB2) encodes a putative aminophospholipid translocase that regulates trichome branch elongation in Arabidopsis. Plant J 60:195–206

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Graham TR (2009) Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast. Proc Nat Acad Sci USA 106:16586–16591

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa L. López-Marqués .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

López-Marqués, R.L., Sørensen, D.M., Palmgren, M.G. (2011). Type IV (P4) and V (P5) P-ATPases in Lipid Translocation and Membrane Trafficking. In: Geisler, M., Venema, K. (eds) Transporters and Pumps in Plant Signaling. Signaling and Communication in Plants, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14369-4_11

Download citation

Publish with us

Policies and ethics