Skip to main content

Computer Modeling and Analysis of the Orion Spacecraft Parachutes

  • Conference paper
  • First Online:
Fluid Structure Interaction II

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 73))

  • 4169 Accesses

Abstract

We focus on fluid-structure interaction (FSI) modeling of the ringsail parachutes to be used with the Orion spacecraft. The geometric porosity of the ringsail parachutes with ring gaps and sail slits is one of the major computational challenges involved in FSI modeling. We address the computational challenges with the latest techniques developed by the Team for Advanced Flow Simulation and Modeling (T ⋆ AFSM) in conjunction with the Stabilized Space–Time Fluid–Structure Interaction (SSTFSI) technique. We investigate the performance of the three possible design configurations of the parachute canopy, carry out parametric studies on using an over-inflation control line (OICL) intended for enhancing the parachute performance, discuss rotational periodicity techniques for improving the geometric-porosity modeling and for computing good starting conditions for parachute clusters, and report results from preliminary FSI computations for parachute clusters. We also present a stability and accuracy analysis for the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation, which is the core numerical technology of the SSTFSI technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Bazilevs, V. M. Calo, J. A. Cottrel, T. J. R. Hughes, A. Reali, and G. Scovazzi. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering, 197:173–201, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  2. Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang. Isogeometric fluid–structure interaction: theory, algorithms, and computations. Computational Mechanics, 43:3–37, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  3. Y. Bazilevs, V. M. Calo, Y. Zhang, and T. J. R. Hughes. Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Computational Mechanics, 38:310–322, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  4. Y. Bazilevs, J. R. Gohean, T. J. R. Hughes, R. D. Moser, and Y. Zhang. Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comp. Meth. in Appl. Mech. and Engng., 198:3534–3550, 2009.

    Google Scholar 

  5. Y. Bazilevs, Ming-Chen Hsu, D. Benson, S. Sankaran, and A. Marsden. Computational fluid–structure interaction: Methods and application to a total cavopulmonary connection. Computational Mechanics, 45:77–89, 2009.

    Google Scholar 

  6. Y. Bazilevs, Ming-Chen Hsu, Y. Zhang, W. Wang, X. Liang, T. Kvamsdal, R. Brekken, and J. Isaksen. A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Computational Mechanics, 2009. Published online. DOI:10.1007/s00466-009-0421-4.

    Google Scholar 

  7. Kai-Uwe Bletzinger, R. Wüchner, and A. Kupzok. Algorithmic treatment of shells and free form-membranes in FSI. In H.-J. Bungartz and M. Schäfer, editors, Fluid–Structure Interaction, volume 53 of Lecture Notes in Computational Science and Engineering, pages 336–355. Springer, 2006.

    Google Scholar 

  8. M. Brenk, H.-J. Bungartz, M. Mehl, and T. Neckel. Fluid–structure interaction on Cartesian grids: Flow simulation and coupling environment. In H.-J. Bungartz and M. Schäfer, editors, Fluid–Structure Interaction, volume 53 of Lecture Notes in Computational Science and Engineering, pages 233–269. Springer, 2006.

    Google Scholar 

  9. W. Dettmer and D. Peric. A computational framework for fluid-structure interaction: Finite element formulation and applications. Comp. Meth. in Appl. Mech. and Engng., 195:5754–5779, 2006.

    Article  MATH  Google Scholar 

  10. W. G. Dettmer and D. Peric. On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Computational Mechanics, 43:81–90, 2008.

    Article  MATH  Google Scholar 

  11. Jean-Frederic Gerbeau, M. Vidrascu, and P. Frey. Fluid–structure interaction in blood flow on geometries based on medical images. Computers and Structures, 83:155–165, 2005.

    Google Scholar 

  12. G. Hauke and M. H. Doweidar. Fourier analysis of semi-discrete and space–time stabilized methods for the advective-diffusive-reactive equation: I. SUPG. Computer Methods in Applied Mechanics and Engineering, 194:45–81, 2005.

    Google Scholar 

  13. T. J. R Hughes. The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

    Google Scholar 

  14. T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comp. Meth. in Appl. Mech. and Engng., 194:4135–4195, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. J. R Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comp. Meth. in Appl. Mech. and Engng., 29:329–349, 1981.

    Google Scholar 

  16. T. J. R Hughes and T. E. Tezduyar. Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comp. Meth. in Appl. Mech. and Engng., 45:217–284, 1984.

    Google Scholar 

  17. J. G. Isaksen, Y. Bazilevs, T. Kvamsdal, Y. Zhang, J. H. Kaspersen, K. Waterloo, B. Romner, and T. Ingebrigtsen. Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke, 39:3172–3178, 2008.

    Article  Google Scholar 

  18. A. A. Johnson and T. E. Tezduyar. Parallel computation of incompressible flows with complex geometries. International Journal for Numerical Methods in Fluids, 24:1321–1340, 1997.

    Article  MATH  Google Scholar 

  19. A. A. Johnson and T. E. Tezduyar. Advanced mesh generation and update methods for 3D flow simulations. Computational Mechanics, 23:130–143, 1999.

    Article  MATH  Google Scholar 

  20. V. Kalro and T. E. Tezduyar. A parallel 3D computational method for fluid–structure interactions in parachute systems. Comp. Meth. in Appl. Mech. and Engng., 190:321–332, 2000.

    Article  MATH  Google Scholar 

  21. R. A. Khurram and A. Masud. A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Computational Mechanics, 38:403–416, 2006.

    Article  MATH  Google Scholar 

  22. U. Küttler, C. Förster, and W. A. Wall. A solution for the incompressibility dilemma in partitioned fluid–structure interaction with pure Dirichlet fluid domains. Computational Mechanics, 38:417–429, 2006.

    Article  MATH  Google Scholar 

  23. U. Küttler and W. A. Wall. Fixed-point fluid–structure interaction solvers with dynamic relaxation. Computational Mechanics, 43:61–72, 2008.

    Article  MATH  Google Scholar 

  24. R. Löhner, J. R. Cebral, C. Yang, J. D. Baum, E. L. Mestreau, and O. Soto. Extending the range of applicability of the loose coupling approach for FSI simulations. In H.-J. Bungartz and M. Schäfer, editors, Fluid–Structure Interaction, volume 53 of Lecture Notes in Computational Science and Engineering, pages 82–100. Springer, 2006.

    Google Scholar 

  25. M. Manguoglu, A. H. Sameh, F. Saied, T. E. Tezduyar, and S. Sathe. Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. Journal of Applied Mechanics, 76:021204, 2009.

    Article  Google Scholar 

  26. M. Manguoglu, A. H. Sameh, T. E. Tezduyar, and S. Sathe. A nested iterative scheme for computation of incompressible flows in long domains. Computational Mechanics, 43:73–80, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Manguoglu, K. Takizawa, A. H. Sameh, and T. E. Tezduyar. Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Computational Mechanics, published online, DOI: 10.1007/s00466-009-0426-z, October 2009.

    Google Scholar 

  28. A. Masud, M. Bhanabhagvanwala, and R. A. Khurram. An adaptive mesh rezoning scheme for moving boundary flows and fluid–structure interaction. Computers & Fluids, 36:77–91, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  29. C. Michler, E. H. van Brummelen, and R. de Borst. An interface Newton–Krylov solver for fluid–structure interaction. International Journal for Numerical Methods in Fluids, 47:1189–1195, 2005.

    Article  MATH  Google Scholar 

  30. S. Mittal and T. E. Tezduyar. Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comp. Meth. in Appl. Mech. and Engng., 112:253–282, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Mittal and T. E. Tezduyar. Parallel finite element simulation of 3D incompressible flows – Fluid-structure interactions. International Journal for Numerical Methods in Fluids, 21:933–953, 1995.

    Article  MATH  Google Scholar 

  32. R. Ohayon. Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comp. Meth. in Appl. Mech. and Engng., 190:3009–3019, 2001.

    Article  MATH  Google Scholar 

  33. T. Sawada and T. Hisada. Fuid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Computers & Fluids, 36:136–146, 2007.

    Article  MATH  Google Scholar 

  34. F. Shakib, T. J. R. Hughes, and Z. Johan. A new finite element formulation for computational fluid dynamics: X. The compressible euler and navier-stokes equations. Comput. Methods Appl. Mech. and Engrg., 89:141–219, 1991.

    Google Scholar 

  35. K. Stein, R. Benney, V. Kalro, T. E. Tezduyar, J. Leonard, and M. Accorsi. Parachute fluid–structure interactions: 3-D Computation. Comp. Meth. in Appl. Mech. and Engng., 190:373–386, 2000.

    Article  MATH  Google Scholar 

  36. K. Stein, R. Benney, T. Tezduyar, and J. Potvin. Fluid–structure interactions of a cross parachute: Numerical simulation. Comp. Meth. in Appl. Mech. and Engng., 191:673–687, 2001.

    Article  MATH  Google Scholar 

  37. K. Stein, T. Tezduyar, and R. Benney. Computational methods for modeling parachute systems. Computing in Science and Engineering, 5:39–46, 2003.

    Article  Google Scholar 

  38. K. Stein, T. Tezduyar, and R. Benney. Mesh moving techniques for fluid–structure interactions with large displacements. Journal of Applied Mechanics, 70:58–63, 2003.

    Article  MATH  Google Scholar 

  39. K. Stein, T. Tezduyar, V. Kumar, S. Sathe, R. Benney, E. Thornburg, C. Kyle, and T. Nonoshita. Aerodynamic interactions between parachute canopies. Journal of Applied Mechanics, 70:50–57, 2003.

    Article  MATH  Google Scholar 

  40. K. Stein, T. E. Tezduyar, and R. Benney. Automatic mesh update with the solid-extension mesh moving technique. Comp. Meth. in Appl. Mech. and Engng., 193:2019–2032, 2004.

    Article  MATH  Google Scholar 

  41. K. R. Stein, R. J. Benney, T. E. Tezduyar, J. W. Leonard, and M. L. Accorsi. Fluid–structure interactions of a round parachute: Modeling and simulation techniques. Journal of Aircraft, 38:800–808, 2001.

    Article  Google Scholar 

  42. K. Takizawa, J. Christopher, T. E. Tezduyar, and S. Sathe. Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Communications in Numerical Methods in Engineering, published online, DOI: 10.1002/cnm.1241, March 2009.

    Google Scholar 

  43. K. Takizawa, C. Moorman, S. Wright, J. Christopher, and T. E. Tezduyar. Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Computational Mechanics, published online, DOI: 10.1007/s00466-009-0425-0, October 2009.

    Google Scholar 

  44. T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal. Parallel finite-element computation of 3D flows. Computer, 26(10):27–36, 1993.

    Article  Google Scholar 

  45. T. Tezduyar and Y. Osawa. Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comp. Meth. in Appl. Mech. and Engng., 191:717–726, 2001.

    Article  MATH  Google Scholar 

  46. T. E. Tezduyar. Stabilized finite element formulations for incompressible flow computations. Advances in Applied Mechanics, 28:1–44, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  47. T. E. Tezduyar. Computation of moving boundaries and interfaces and stabilization parameters. International Journal for Numerical Methods in Fluids, 43:555–575, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  48. T. E. Tezduyar. Finite element methods for fluid dynamics with moving boundaries and interfaces. In E. Stein, R. De Borst, and T. J. R. Hughes, editors, Encyclopedia of Computational Mechanics, Volume 3: Fluids, chapter 17. John Wiley & Sons, 2004.

    Google Scholar 

  49. T. E. Tezduyar. Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comp. Meth. in Appl. Mech. and Engng., 195:2983–3000, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  50. T. E. Tezduyar, S. K. Aliabadi, M. Behr, and S. Mittal. Massively parallel finite element simulation of compressible and incompressible flows. Comp. Meth. in Appl. Mech. and Engng., 119:157–177, 1994.

    Article  MATH  Google Scholar 

  51. T. E. Tezduyar, M. Behr, and J. Liou. A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comp. Meth. in Appl. Mech. and Engng., 94(3):339–351, 1992.

    Google Scholar 

  52. T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou. A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comp. Meth. in Appl. Mech. and Engng., 94(3):353–371, 1992.

    Google Scholar 

  53. T. E. Tezduyar and Y. J. Park. Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comp. Meth. in Appl. Mech. and Engng., 59:307–325, 1986.

    Article  MATH  Google Scholar 

  54. T. E. Tezduyar and S. Sathe. Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques. International Journal for Numerical Methods in Fluids, 54:855–900, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  55. T. E. Tezduyar, S. Sathe, T. Cragin, B. Nanna, B. S. Conklin, J. Pausewang, and M. Schwaab. Modeling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics. International Journal for Numerical Methods in Fluids, 54:901–922, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  56. T. E. Tezduyar, S. Sathe, R. Keedy, and K. Stein. Space–time techniques for finite element computation of flows with moving boundaries and interfaces. In S. Gallegos, I. Herrera, S. Botello, F. Zarate, and G. Ayala, editors, Proceedings of the III International Congress on Numerical Methods in Engineering and Applied Science. CD-ROM, Monterrey, Mexico, 2004.

    Google Scholar 

  57. T. E. Tezduyar, S. Sathe, R. Keedy, and K. Stein. Space–time finite element techniques for computation of fluid–structure interactions. Comp. Meth. in Appl. Mech. and Engng., 195:2002–2027, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  58. T. E. Tezduyar, S. Sathe, J. Pausewang, M. Schwaab, J. Christopher, and J. Crabtree. Fluid–structure interaction modeling of ringsail parachutes. Computational Mechanics, 43:133–142, 2008.

    Article  MATH  Google Scholar 

  59. T. E. Tezduyar, S. Sathe, J. Pausewang, M. Schwaab, J. Christopher, and J. Crabtree. Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Computational Mechanics, 43:39–49, 2008.

    Article  MATH  Google Scholar 

  60. T. E. Tezduyar, S. Sathe, M. Schwaab, and B. S. Conklin. Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. International Journal for Numerical Methods in Fluids, 57:601–629, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  61. T. E. Tezduyar, S. Sathe, and K. Stein. Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comp. Meth. in Appl. Mech. and Engng., 195:5743–5753, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  62. T. E. Tezduyar, S. Sathe, K. Stein, and L. Aureli. Modeling of fluid–structure interactions with the space–time techniques. In H.-J. Bungartz and M. Schäfer, editors, Fluid–Structure Interaction, volume 53 of Lecture Notes in Computational Science and Engineering, pages 50–81. Springer, 2006.

    Google Scholar 

  63. T. E. Tezduyar, M. Schwaab, and S. Sathe. Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. Comp. Meth. in Appl. Mech. and Engng., 198:3524–3533, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  64. T. E. Tezduyar, K. Takizawa, and J. Christopher. Multiscale Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. In S. Hartmann, A. Meister, M. Schaefer, and S. Turek, editors, International Workshop on Fluid–Structure Interaction — Theory, Numerics and Applications. Kassel University Press, 2009.

    Google Scholar 

  65. T. E. Tezduyar, K. Takizawa, J. Christopher, C. Moorman, and S. Wright. Interface projection techniques for complex FSI problems. In T. Kvamsdal, B. Pettersen, P. Bergan, E. Onate, and J. Garcia, editors, Marine 2009, Barcelona, Spain, 2009. CIMNE.

    Google Scholar 

  66. T. E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christopher. Space–time finite element computation of complex fluid–structure interactions. International Journal for Numerical Methods in Fluids, published online, DOI: 10.1002/d.2221, 2009.

    Google Scholar 

  67. T. E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christopher. Multiscale sequentially-coupled arterial FSI technique. Computational Mechanics, published online, DOI: 10.1007/s00466-009-0423-2, October 2009.

    Google Scholar 

  68. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Influence of wall elasticity on image-based blood flow simulation. Japan Society of Mechanical Engineers Journal Series A, 70:1224–1231, 2004. in Japanese.

    Google Scholar 

  69. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation. Comp. Meth. in Appl. Mech. and Engng., 195:1885–1895, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  70. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Computational Mechanics, 38:482–490, 2006.

    Article  MATH  Google Scholar 

  71. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Influence of wall elasticity in patient-specific hemodynamic simulations. Computers & Fluids, 36:160–168, 2007.

    Article  MATH  Google Scholar 

  72. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm — Dependence of the effect on the aneurysm shape. International Journal for Numerical Methods in Fluids, 54:995–1009, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  73. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: Influence of structural modeling. Computational Mechanics, 43:151–159, 2008.

    Article  MATH  Google Scholar 

  74. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Fluid–structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes. Comp. Meth. in Appl. Mech. and Engng., 198:3613–3621, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  75. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Communications in Numerical Methods in Engineering, published online, DOI: 10.1002/cnm.1289, July 2009.

    Google Scholar 

  76. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Computational Mechanics, published online, DOI: 10.1007/s00466-009-0439-7, November 2009.

    Google Scholar 

  77. E. H. van Brummelen and R. de Borst. On the nonnormality of subiteration for a fluid-structure interaction problem. SIAM Journal on Scientific Computing, 27:599–621, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  78. W. A. Wall, S. Genkinger, and E. Ramm. A strong coupling partitioned approach for fluid–structure interaction with free surfaces. Computers & Fluids, 36:169–183, 2007.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Tezduyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this paper

Cite this paper

Takizawa, K., Moorman, C., Wright, S., Tezduyar, T.E. (2011). Computer Modeling and Analysis of the Orion Spacecraft Parachutes. In: Bungartz, HJ., Mehl, M., Schäfer, M. (eds) Fluid Structure Interaction II. Lecture Notes in Computational Science and Engineering, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14206-2_3

Download citation

Publish with us

Policies and ethics