Skip to main content

Collaborative Preference Learning

  • Chapter
  • First Online:
Book cover Preference Learning

Abstract

Every recommender system needs the notion of preferences of a user to suggest one item and not another. However, current recommender algorithms deduct these preferences by first predicting an actual rating of the items and then sorting those. Departing from this, we present an algorithm that is capable of directly learning the preference function from given ratings. The presented approach combines recent results on preference learning, state-of-the-art optimization algorithms, and the large margin approach to capacity control. The algorithm follows the matrix factorization paradigm to collaborative filtering. Maximum Margin Matrix Factorization (MMMF) has been introduced to control the capacity of the prediction to avoid overfitting. We present an extension to this approach that is capable of using the methodology developed by the Learning to Rank community to learn a ranking of unrated items for each user. In addition, we integrate several recently proposed extensions to MMMF into one coherent framework where they can be combined in a mix-and-match fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We assume \(\mathrm{argsort}(f)\) to sort f decreasingly.

  2. 2.

    The implementation did not scale to the bigger data sets Eachmovie and Netflix.

References

  1. J. Basilico, T. Hofmann, Unifying collaborative and content-based filtering, in Proceedings of the 21st International Conference on Machine Learning (ICML) (ACM, New York, NY, 2004), pp. 65–72

    Google Scholar 

  2. L. Bottou, Stochastic learning, in Advanced Lectures on Machine Learning, Lecture Notes in Artificial Intelligence, LNAI 3176, ed. by O. Bousquet, U. von Luxburg (Springer, Berlin, 2004), pp. 146–168

    Google Scholar 

  3. C.J. Burges, Q.V. Le, R. Ragno, Learning to rank with nonsmooth cost functions, in Advances in Neural Information Processing Systems (NIPS), vol. 19, ed. by B. Schölkopf, J. Platt, T. Hofmann (2007), pp. 193–200

    Google Scholar 

  4. O. Chapelle, Q.V. Le, A. Smola, Large margin optimization of ranking measures, in NIPS Workshop: Machine Learning for Web Search (2007)

    Google Scholar 

  5. W. Chu, Z. Ghahramani, Gaussian processes for ordinal regression. J. Mach. Learn. Res. 6, 1019–1041 (2005)

    MathSciNet  MATH  Google Scholar 

  6. R. Herbrich, T. Graepel, K. Obermayer, Large margin rank boundaries for ordinal regression, in Advances in Large Margin Classifiers, ed. by A.J. Smola, P.L. Bartlett, B. Schölkopf, D. Schuurmans (MIT, Cambridge, MA, 2000), pp. 115–132

    Google Scholar 

  7. T. Hofmann, Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. (TOIS) 22(1), 89–115 (2004)

    Google Scholar 

  8. T. Joachims, Training linear SVMs in linear time, in Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD) (ACM, 2006), pp. 217–226

    Google Scholar 

  9. J. Nocedal, S.J. Wright, Numerical Optimization, Springer Series in Operations Research (Springer, 1999)

    Google Scholar 

  10. T. Qin, T.-Y. Liu, H. Li, A general approximation framework for direct optimization of information retrieval measures. Technical Report MSR-TR-2008-164, Microsoft Research, November 2008

    Google Scholar 

  11. J. Rennie, N. Srebro, Fast maximum margin matrix factoriazation for collaborative prediction, in Proceedings of the 22nd International Conference on Machine Learning (ICML) (2005), pp. 713–719

    Google Scholar 

  12. R. Salakhutdinov, A. Mnih, Probabilistic matrix factorization, in Advances in Neural Information Processing Systems (NIPS), vol. 20 (MIT, Cambridge, MA, 2008)

    Google Scholar 

  13. A. Smola, S.V.N. Vishwanathan, Q. Le, Bundle methods for machine learning, in Advances in Neural Information Processing Systems (NIPS), vol. 20 (MIT, Cambridge, MA, 2008)

    Google Scholar 

  14. A.J. Smola, I.R. Kondor, Kernels and regularization on graphs, in Proceedings of the Annual Conference on Computational Learning Theory (COLT), Lecture Notes in Computer Science, ed. by B. Schölkopf, M.K. Warmuth (Springer, Heidelberg, Germany, 2003), pp. 144–158

    Google Scholar 

  15. N. Srebro, T. Jaakkola, Weighted low-rank approximations, in Proceedings of the 20th International Conference on Machine Learning (ICML 2003) (AAAI, 2003), pp. 720–727

    Google Scholar 

  16. N. Srebro, J. Rennie, T. Jaakkola, Maximum-margin matrix factorization, in Advances in Neural Information Processing Systems (NIPS), vol. 17, ed. by L.K. Saul, Y. Weiss, L. Bottou (MIT, Cambridge, MA, 2005), pp. 1329–1336

    Google Scholar 

  17. N. Srebro, A. Shraibman, Rank, trace-norm and max-norm, in Proceedings of the Annual Conference on Computational Learning Theory (COLT), vol. 3559, Lecture Notes in Artificial Intelligence, ed. by P. Auer, R. Meir (Springer, 2005), pp. 545–560

    Google Scholar 

  18. G. Takács, I. Pilászy, B. Németh, D. Tikk, Major components of the gravity recommendation system. SIGKDD Explor. Newslett. 9(2), 80–83 (2007)

    Article  Google Scholar 

  19. B. Taskar, C. Guestrin, D. Koller, Max-margin Markov networks, in Advances in Neural Information Processing Systems (NIPS), vol. 16, ed. by S. Thrun, L. Saul, B. Schölkopf (MIT, Cambridge, MA, 2004), pp. 25–32

    Google Scholar 

  20. I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  21. M. Weimer, A. Karatzoglou, Q. Le, A. Smola, Cofirank - maximum margin matrix factorization for collaborative ranking, in Advances in Neural Information Processing Systems (NIPS) vol. 20 (MIT, Cambridge, MA, 2008)

    Google Scholar 

  22. M. Weimer, A. Karatzoglou, A. Smola, Adaptive collaborative filtering, in Proceedings of ACM Recommender Systems 2008 (2008), pp. 275–282

    Google Scholar 

  23. M. Weimer, A. Karatzoglou, A. Smola, Improving maximum margin matrix factorization. Mach. Learn. 72(3), 263–276 (2008)

    Article  Google Scholar 

  24. M. Weimer, A. Karatzoglou, A. Smola, Improving maximum margin matrix factorization, in Machine Learning and Knowledge Discovery in Databases, vol. 5211, LNAI, ed. by W. Daelemans, B. Goethals, K. Morik (Springer, 2008), pp. 14–14

    Google Scholar 

  25. J. Yu, S.V.N. Vishwanathan, S. Günter, N.N. Schraudolph, A quasi-Newton approach to nonsmooth convex optimization, In Proceedings of the 25th International Conference on Machine Learning (ICML), ed. by A. McCallum, S. Roweis (Omnipress, 2008.), pp. 1216–1223

    Google Scholar 

  26. S. Yu, K. Yu, V. Tresp, H.P. Kriegel, Collaborative ordinal regression, in Proceedings of the 23rd International Conference on Machine Learning (ICML), ed. by W.W. Cohen, A. Moore (ACM, 2006), pp. 1089–1096

    Google Scholar 

Download references

Acknowledgements

Markus Weimer has been funded under Grant 1223 by the German Science Foundation (DFG). Alexandros Karatzoglou was funded by a grant of the ANR - CADI project. We gratefully acknowledge support by the Frankfurt Center for Scientific Computing in running our experiments. We would also like to thank Alex Smola for important discussions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Karatzoglou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karatzoglou, A., Weimer, M. (2010). Collaborative Preference Learning. In: Fürnkranz, J., Hüllermeier, E. (eds) Preference Learning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14125-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14125-6_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14124-9

  • Online ISBN: 978-3-642-14125-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics