Skip to main content

Ginzburg-Landau Equation for Fractal Media

  • Chapter
Fractional Dynamics

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

  • 3419 Accesses

Abstract

The Ginzburg-Landau equation (Ginzburg and Landau, 1950; Ginzburg, 2004) is one of the most-studied nonlinear equations in physics (Aranson and Kramer, 2002). It describes a vast variety of phenomena from nonlinear waves to second-order phase transitions, from superconductivity, superfluidity, and Bose-Einstein condensation to liquid crystals and strings in field theory. The Ginzburg-Landau equation can be derived (Lifshitz and Pitaevsky, 1980) from free energy functional. We can define the free energy functional in the form:

$$ F\{ \Psi (x)\} = {F_0} + \frac{1}{2}\int_W {\left( {g{{({D^1}\Psi )}^2} + a{\Psi ^2} + \frac{b}{2}{\Psi ^4}} \right)} d{V_3}, $$
(5.1)

where Ψ= Ψ(x) is a real-valued function. In Eq. (5.1) the integration is over 3-dimensional region W of continuous media. Here F 0 is a free energy of the normal state, i.e., F{Ψ(x)} for Ψ(x) = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • O.P. Agrawal, 2002, Formulation of Euler-Lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 272, 368–379.

    Article  MathSciNet  MATH  Google Scholar 

  • O.P. Agrawal, 2006, Fractional variational calculus and the transversality conditions, Journal of Physics A, 39, 10375–10384.

    Article  MATH  Google Scholar 

  • O.P. Agrawal, 2007a, Fractional variational calculus in terms of Riesz fractional derivatives, Journal of Physics A, 40, 6287–6303.

    Article  MATH  Google Scholar 

  • O.P. Agrawal, 2007b, Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative, Journal of Vibration and Control, 13, 1217–1237.

    Article  MathSciNet  MATH  Google Scholar 

  • O.P. Agrawal, 2008, A general finite element formulation for fractional variational problems, Journal of Mathematical Analysis and Applications, 337, 1–12.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • I.S. Aranson, L. Kramer, 2002, The word of the complex Ginzburg-Landau equation, Reviews of Modern Physics, 74, 99–143. E-print: cond-mat/0106115.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Z. Bak, 2007, Landau-Ginzburg theory of phase transitions in fractal systems, Phase Transitions, 80, 79–87.

    Article  MathSciNet  Google Scholar 

  • V.L. Ginzburg, 2004, Nobel Lecture: On superconductivity and superfluidity (what I have and have not managed to do) as well as on the “physical minimum” at the beginning of the XXI century, Reviews of Modern Physics, 76, 981–998.

    Article  ADS  Google Scholar 

  • V.L. Ginzburg, L.D. Landau, 1950, To the theory of superconductivity, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 20, 1064–1082.

    Google Scholar 

  • A.A. Kubas, H.M. Srivastava, J.J. Trujillo, 2006, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.

    Google Scholar 

  • E.M. Lifshitz, L.P. Pitaevsky, 1980, Statistical Physics, Landau Course on Theoretical Physics, Vol.9, Pergamon Press, Oxford, New York.

    Google Scholar 

  • A.V. Milovanov, J.J. Rasmussen, 2005, Fractional generalization of the Ginzburg-Landau equation: an unconventional approach to critical phenomena in complex media, Physics Letters A, 337, 75–80.

    Article  ADS  MATH  Google Scholar 

  • S.G. Samko, A.A. Kilbas, O.I. Marichev, 1993, Integrals and Derivatives of Fractional Order and Applications, Nauka i Tehnika, Minsk, 1987, in Russian; and Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.

    Google Scholar 

  • V.E. Tarasov, 2005, Wave equation for fractal solid string, Modern Physics Letters B, 19, 721–728.

    Article  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2006, Psi-series solution of fractional Ginzburg-Landau equation, Journal of Physics A, 39, 8395–8407.

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, 2005, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354, 249–261.

    Article  ADS  Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, 2006, Fractional dynamics of coupled oscillators with long-range interaction, Chaos, 16, 023110.

    Article  MathSciNet  ADS  Google Scholar 

  • H. Weitzner, G.M. Zaslavsky, 2003, Some applications of fractional derivatives, Communications in Nonlinear Science and Numerical Simulation, 8, 273–281.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarasov, V.E. (2010). Ginzburg-Landau Equation for Fractal Media. In: Fractional Dynamics. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14003-7_5

Download citation

Publish with us

Policies and ethics