Skip to main content

Fractional Nonholonomic Dynamics

  • Chapter
Fractional Dynamics

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

  • 3431 Accesses

Abstract

Nonholonomic dynamics describes systems constrained by nonintegrable relationships. The constraint, called holonomic constraint, depends only on the coordinates. It does not depend on the velocities. Velocity dependent constraints such as could be holonomic constraints if it can be integrated into a simple holonomic constraint. A constraint that cannot be integrated into a holonomic constraint is called non-holonomic (Tchetaev, 1962; Dobronravov, 1970; Rumiantsev, 1978, 2000, 1982). The constraint, called fractional nonholonomic constraint (Tarasov and Zaslavsky, 2006a), depends on the derivatives of non-integer orders (Samko et al., 1993; Kubas et al., 2006). The fractional nonholonomic constraints are interpreted as constraints with long-term memory (Tarasov and Zaslavsky, 2006a). Fractional derivatives allow one to describe constraints with power-law long-term memory by using the fractional calculus (Samko et al., 1993; Kubas et al., 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • B.N.N. Achar, J.W. Hanneken, T. Clarke, 2004, Damping characteristics of a fractional oscillator, Physica A, 339, 311–319.

    Article  MathSciNet  ADS  Google Scholar 

  • B.N.N. Achar, J.W. Hanneken, T. Clarke, 2002, Response characteristics of a fractional oscillator, Physica A, 309, 275–288.

    Article  ADS  MATH  Google Scholar 

  • B.N.N. Achar, J.W. Hanneken, T. Enck, T. Clarke, 2001, Dynamics of the fractional oscillator, Physica A, 297, 361–367.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • O.P. Agrawal, 2002, Formulation of Euler-Lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 272, 368–379.

    Article  MathSciNet  MATH  Google Scholar 

  • O.P. Agrawal, 2006, Fractional variational calculus and the transversality conditions, Journal of Physics A, 39, 10375–10384.

    Article  MATH  Google Scholar 

  • O.P. Agrawal, 2007a, Fractional variational calculus in terms of Riesz fractional derivatives, Journal of Physics A, 40, 6287–6303.

    Article  MATH  Google Scholar 

  • O.P. Agrawal, 2007b, Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative, Journal of Vibration and Control, 13, 1217–1237.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Caputo, 1967, Linear models of dissipation whose Q is almost frequency in-dependent, Part II, Geophysical Journal of the Royal Astronomical Society, 13, 529–539.

    Article  Google Scholar 

  • M. Caputo, 1969, Elasticita e Dissipazione, Zanichelli, Bologna. In Italian.

    Google Scholar 

  • M. Caputo, F. Mainardi, 1971a, Linear models of dissipation in anelastic solids, Rivista del Nuovo Cimento, Ser.II, 1, 161–198.

    Article  ADS  Google Scholar 

  • M. Caputo, F. Mainardi, 1971b, A new dissipation model based on memory mechanism, Pure and Applied Geophysics, 91, 134–147.

    Article  ADS  Google Scholar 

  • C. Cronström, T. Raita, 2009, On nonholonomic systems and variational principles, Journal of Mathematical Physics, 50, 042901; and E-print: arXiv:0810.3611.

    Article  MathSciNet  ADS  Google Scholar 

  • V.V. Dobronravov, 1970, Foundations of Mechanics of Nonholonomic Systems, Vishaya Shkola, Moscow. In Russian.

    Google Scholar 

  • V.V. Dobronravov, 1976, Foundations of Analytical Mechanics, Vishaya Shkola, Moscow. In Russian. Section 1.5.

    Google Scholar 

  • M.M. Dzherbashyan, 1966, Integral Transform Representations of Functions in the Complex Domain, Nauka, Moscow.

    Google Scholar 

  • A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, 1981, Higher Transcendental Functions, Vol.1, Krieger, Melbbourne, Florida, New York.

    Google Scholar 

  • D.J. Evans, W.G. Hoover, B.H. Failor, B. Moran, AJ.C. Ladd, 1983, Nonequilib-rium molecular dynamics via Gauss’s principle of least constraint, Physical Review A, 28, 1016–1021.

    Article  ADS  Google Scholar 

  • D.J. Evans, G.P. Morriss, 1983, The isothermal/isobaric molecular dynamics ensemble, Physics Letters A, 98, 433–436.

    Article  ADS  Google Scholar 

  • D. Frenkel, B. Smit, 2001, Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed., Academic Press, New York.

    Google Scholar 

  • V. Gafiychuk, B. Datsko, V. Meleshko, 2008, Analysis of fractional order Bonhoeffer-van der Pol oscillator, Physica A, 387, 418–424

    Article  ADS  Google Scholar 

  • T.M. Galea, P. Attard, 2002, Constraint method for deriving nonequilibrium molecular dynamics equations of motion, Physical Review E, 66, 041207.

    Article  ADS  Google Scholar 

  • R. Gorenflo, F. Mainardi, 1997, Fractional calculus: Integral and differential equations of fractional order, in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri, F. Mainardi (Eds.), Springer, New York, 223–276; and E-printarxiv:0805.3823.

    Google Scholar 

  • J.M. Haue, S. Gupta, 1983, Extensions of the molecular dynamics simulation method. II. Isothermal systems, Journal of Chemical Physics, 79, 3067–3076.

    Article  ADS  Google Scholar 

  • A.K. Jonscher, 1996, Universal Relaxation Law, Chelsea Dielectrics Press, London.

    Google Scholar 

  • A.K. Jonscher, 1999, Dielectric relaxation in solids, Journal of Physics D, 32, R57–R70.

    Article  ADS  Google Scholar 

  • A.A. Kubas, H.M. Srivastava, J.J. Trujillo, 2006, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.

    Google Scholar 

  • F. Mainardi, R. Gorenflo, 2000, On Mittag-Leffler-type functions in fractional evolution processes, Journal of Computational and Applied Mathematics, 118, 283–299.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • F. Mainardi, 1996, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons and Fractals, 1, 1461–1477.

    Article  MathSciNet  ADS  Google Scholar 

  • F. Mainardi, Yu. Luchko, G. Pagnini, 2001, The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus and Applied Analysis, 4, 153–192.

    MathSciNet  MATH  Google Scholar 

  • P. Minary, G.J. Martyna, M.E. Tuckerman, 2003, Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics, Journal of Chemical Physics, 118, 2510–2526.

    Article  ADS  Google Scholar 

  • S. Nose, 1991, Constant-temperature molecular dynamics, Progress of Theoretical Physics, Supplement, 103, 1–46.

    Article  MathSciNet  Google Scholar 

  • L.A. Pars, 1964, A Treatise on Analytical Dynamics, Heinemann, London.

    Google Scholar 

  • I. Podlubny, 1999, Fractional Differential Equations, Academic Press, New York.

    MATH  Google Scholar 

  • J.D. Ramshaw, 1986, Remarks on entropy and irreversibility in non-Hamiltonian systems, Physics Letters A, 116, 110–114.

    Article  MathSciNet  ADS  Google Scholar 

  • J.D. Ramshaw, 2002, Remarks on non-Hamiltonian statistical mechanics, Euro-physics Letters, 59, 319–323.

    Article  MathSciNet  ADS  Google Scholar 

  • V.V. Rumiantsev, 1978, On Hamilton’s principle for nonholonomic systems, Journal of Applied Mathematics and Mechanics 42, 407–419; and Hamilton’s principle for nonholonomic systems, Prikladnaya Matematika i Mekhanika, 42, 387–399. In Russian.

    Article  ADS  Google Scholar 

  • V.V. Rumiantsev, 1982, On integral principles for nonholonomic systems, Journal of Applied Mathematics and Mechanics, 46, 1–8.

    Article  MathSciNet  ADS  Google Scholar 

  • V.V. Rumyantsev, 2000, Forms of Hamilton’s principle for nonholonomic systems, Facta Universitatis. Series Mechanics, Automatic Control and Robotics, 2, 1035–1048. http://facta.junis.ni.ac.rs/macar/macar2000/macar2000-02.pdf

    MATH  Google Scholar 

  • Y.E. Ryabov, A. Puzenko, 2002, Damped oscillations in view of the fractional oscillator equation, Physical Review B, 66, 184201.

    Article  ADS  Google Scholar 

  • S.G. Samko, A.A. Kubas, O.I. Marichev, 1993, Integrals and Derivatives of Fractional Order and Applications, Nauka i Tehnika, Minsk, 1987. in Russian; and Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.

    Google Scholar 

  • A.A. Stanislavsky, 2004, Fractional oscillator, Physical Review E, 70, 051103.

    Article  ADS  Google Scholar 

  • A.A. Stanislavsky, 2005, Twist of fractional oscillations, PhysicaA, 354, 101–110.

    Article  ADS  Google Scholar 

  • V.E. Tarasov, 2003, Classical canonical distribution for dissipative systems, Modern Physics Letters B, 17, 1219–1226.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2005a, Stationary solutions of Liouville equations for non-Hamiltonian systems, Annals of Physics, 316, 393–413.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2005b, Thermodynamics of few-particle systems, International Journal of Modern Physics B, 19, 879–897.

    Article  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2008a, Fractional equations of Curie-von Schweidler and Gauss laws, Journal of Physics A, 20, 145212.

    ADS  Google Scholar 

  • V.E. Tarasov, 2008b, Universal electromagnetic waves in dielectric, Journal of Physics A, 20, 175223.

    ADS  Google Scholar 

  • V.E. Tarasov, 2010, Fractional dynamics of relativistic particle, International Journal of Theoretical Physics, 49, 293–303.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, 2006a, Nonholonomic constraints with fractional derivatives, Journal of Physics A, 39, 9797–9815.

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, 2006b, Dynamics with low-level fractionality, Physica A, 368, 399–415.

    Article  MathSciNet  ADS  Google Scholar 

  • N.G. Tchetaev, 1932, About Gauss Principle, in Proc. Phys. Math. Soc. of Kazan’ University, 6 Ser.3. (1932–1933) 68–71.

    Google Scholar 

  • N.G. Tchetaev, 1962, Stability of Motion. Works on Analytic Mechanics, Academy of Sciences USSR, Moscow, 323–326. In Russian

    Google Scholar 

  • A. Tofighi, 2003, The intrinsic damping of the fractional oscillator, Physica A, 329, 29–34.

    Article  ADS  Google Scholar 

  • M.E. Tuckerman, 2010, Statistical Mechanics and Molecular Simulations, Oxford University Press, Oxford.

    Google Scholar 

  • M.E. Tuckerman, C.J. Mundy, G.J. Martyna, 1999, On the classical statistical mechanics of non-Hamiltonian systems, Europhysisics Letters, 45, 149–155.

    Article  ADS  Google Scholar 

  • M.E. Tuckerman, Y. Liu, G. Ciccotti, G.J. Martyna, 2001, Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems, Journal of Chemical Physics, 115, 1678–1702.

    Article  ADS  Google Scholar 

  • G.M. Zaslavsky, A.A. Stanislavsky, M. Edelman, 2006, Chaotic and pseudochaotic attractors of perturbed fractional oscillator, Chaos, 16, 013102.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarasov, V.E. (2010). Fractional Nonholonomic Dynamics. In: Fractional Dynamics. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14003-7_17

Download citation

Publish with us

Policies and ethics