Skip to main content

Applications of Ion Induction Accelerators

  • Chapter
  • First Online:

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

Abstract

As discussed in Chap. 9, the physics of ion induction accelerators has many commonalities with the physics of electron induction accelerators. However, there are important differences, arising because of the different missions of ion machines relative to electron machines and also because the velocity of the ions is usually non-relativistic in these applications. The basic architectures and layout reflects these differences. In Chaps. 6, 7, and 8 a number of examples of electron accelerators and their applications were given, including machines that have already been constructed. In this chapter, we give several examples of potential uses for ion induction accelerators. Although, as of this writing, none of these applications have come to fruition, in the case of heavy ion fusion (HIF) , small scale experiments have been carried out and a sizable effort has been made in laying the groundwork for such an accelerator. A second application, using ion beams for study of High Energy Density Physics (HEDP) or Warm Dense Matter (WDM) physics will soon be realized and the requirements for this machine will be discussed in detail. Also, a concept for a spallation neutron source is discussed in lesser detail.

*(Retired)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Initial research on accelerators for heavy ion fusion can be found in the early workshops on the topic: ERDA summer study of heavy ions for inertial fusion, Lawrence Berkeley Laboratory, LBL-5543 (1976); Proceedings of the HIF Workshop, Brookhaven National Laboratory, 17 Oct., 1977, BNL-50769 (1977); Proceedings of the HIF Workshop, Argonne National Laboratory, 19–26 Sep., 1978, ANL-79-41 (1978); Proceedings of the HIF Workshop, Berkeley, CA, 29 Oct.–9 Nov., 1979, Lawrence Berkeley Laboratory, LBL-10301 (1980); Proceedings of more recent heavy ion fusion symposia can be found in: Particle Accelerators 37–38 (1992); Il Nuovo Cimento A 107 (1993); Fusion Engineering and Design 32–33 (1996); Nucl. Instr. Meth. A 415 (1998), 464 (2001), 544 (2005), 577 (2007) and 606 (2009).

    Google Scholar 

  2. I. Hofmann and G. Plass. (editor). The HIDIF-Study. Technical Report GSI-98-06, GSI, 1998.

    Google Scholar 

  3. J. Lindl. Inertial Confinement Fusion: the Quest for Ignition and Energy Gain Using Indirect Drive. Springer, New York, NY, 1998.

    Google Scholar 

  4. B. Logan, L. Perkins, and J. Barnard. Direct Drive Heavy-Ion-Beam Inertial Fusion at High Coupling Efficiency. Phys. Plasmas, 15:072701, 2008.

    Article  ADS  Google Scholar 

  5. M. Tabak and D. Callahan-Miller. Design of a Distributed Radiator Target for Inertial Fusion Driven from Two Sides with Heavy Ion Beams. Phys. Plasmas, 5:1895, 1998.

    Article  ADS  Google Scholar 

  6. D. Callahan-Miller and M. Tabak. Progress in target physics and design for heavy ion fusion. Phys. Plasmas, 7:2083, 2000.

    Article  ADS  Google Scholar 

  7. D. Callahan, M. Herrmann, and M. Tabak. Progress in heavy ion target capsule and hohlraum design. Laser Part. Beams, 20:3:405–410, 2002.

    Article  Google Scholar 

  8. D. Callahan, D. Clark, A. Koniges, M. Tabak, G. Bennett, M. Cuneo, R. Vesey, and A. Nikroo. Heavy-Ion Target Physics and Design in the USA. Nucl. Inst. Meth. A, 544:9–15, 2005.

    Article  ADS  Google Scholar 

  9. B. Logan, R. Bangerter, D. Callahan, M. Tabak, M. Roth, L. Perkins, G. Caporaso. Assessment of Potential for Ion-Driven Fast Ignition. Fusion Sci. Technol., 49, 399–411, 2006.

    Google Scholar 

  10. M. Reiser. Theory and Design of Charged Particle Beams, Wiley, New York, NY, 1994.

    Book  Google Scholar 

  11. J. Barnard, A. Brooks, J. Clay, F. Coffield, F. Deadrick, L. Griffith, A. Harvey, D. Judd, H. Kirbie, V. Neil, M. Newton, A. Paul, L. Reginato, G. E. Russel, W. Sharp, H. Shay, J. Wilson, and S. Yu. Study of Recirculating Induction Accelerators as Drivers for Heavy Ion Fusion. Technical Report UCRL-LR-108095, Lawrence Livermore National Laboratory, 1991.

    Google Scholar 

  12. D. Neuffer. Geometric Aberrations in Final Focussing for Heavy Ion Fusion. Technical Report ANL-79-41, Argonne National Laboratory, 1978.

    Google Scholar 

  13. D. Ho, I. Haber, and K. Crandell. Octupole Correction of Geometric Aberrations for High-Current Heavy Ion Beams. Part. Accel., 36:141–160, 1991.

    Google Scholar 

  14. D. Judd. Phase space constraints on some heavy-ion inertial-fusion igniters and example designs of 1 mj rf linac systems. Technical Report ANL-79-41, p. 237, Argonne National Laboratory, 1978.

    Google Scholar 

  15. D. Grote, A. Friedman, G. Craig, W. Sharp, and I. Haber. Progress Toward Source-to-Target Simulations. Nucl. Instr. Meth. A, 464:563, 2001.

    Article  ADS  Google Scholar 

  16. J. Barnard, R. Bangerter, A. Faltens, T. Fessenden, A. Friedman, E. Lee, B. Logan, S. Lund, W. Meier, W. Sharp, and S. Yu. Induction Accelerator Architectures for Heavy Ion Fusion. Nucl. Inst. Meth. A, 415:218, 1998.

    Article  Google Scholar 

  17. E. Lee. Solenoid Transport for Heavy Ion Fusion. Nucl. Inst. Meth. A, 544:187–193, 2005.

    Article  ADS  Google Scholar 

  18. S. Yu, R. Abbott, R. Bangerter, J. Barnard, R. Briggs, D. Callahan, C. Celata, R. Davidson, C. Debonnel, S. Eylon, A. Faltens, A. Friedman, D. Grote, P. Heitzenroeder, E. Henestroza, I. Kaganovich, J. Kwan, J. Latkowski, E. Lee, B. Logan, P. Peterson, D. Rose, P. Roy, G.-L. Sabbi, P. Seidl, W. Sharp, and D. Welch. Heavy Ion Fusion (HIF) Driver Point Designs. Nucl. Inst. Meth. A, 544:294–299, 2005.

    Article  ADS  Google Scholar 

  19. S. Yu, W. Meier, R. Abbott, J. Barnard, T. Brown, D. Callahan, C. Debonnel, P. Heitzenroeder, J. Latkowski, B. Logan, S. Pemberton, P. Peterson, D. Rose, G-L. Sabbi, W. Sharp, and D. Welch. An Updated Point Design for Heavy Ion Fusion. Fusion Sci. Technol., 44:266–273, 2003.

    Google Scholar 

  20. S. Yu, J. Barnard, R. Briggs, D. Callahan, C. Celata, L. Chao, R. Davidson, C. Debonnel, S. Eylon, A. Friedman, E. Henestroza, I. Kaganovich, J. Kwan, E. Lee, M. Leitner, B. Logan, W. Meier, P. Peterson, L. Reginato, D. Rose, P. Roy, W. Waldron, and D. Welch. Towards a Modular Point Design for Heavy Ion Fusion. Fusion Sci. Technol., 47:621–625, 2005.

    Google Scholar 

  21. T. Godlove. Heavy Ion Recirculating Induction Linac Studies. Part. Accel., 37–38:439–451, 1992.

    Google Scholar 

  22. M. Reiser. Periodic Focusing of Intense Beams. Part. Accel., 8:167–182, 1978.

    Google Scholar 

  23. M. G. Tiefenback. Space-Charge Limits on the Transport of Ion Beams in a Long Alternating Gradient System. PhD thesis, University of California at Berkeley, CA, 1986.

    Google Scholar 

  24. I. Hofmann, L. Laslett, L. Smith, and I. Haber. Stability of the Kapchinskij-Vladimirskij (K-V) Distribution in Long Periodic Transport Systems. Part. Accel., 13:145–178, 1983.

    Google Scholar 

  25. S. Lund and S. Chawla. Space-Charge Transport Limits of Ion Beams in Periodic Quadrupole Focusing Channels. Nucl. Inst. Meth. A, 561:203–208, 2006.

    Article  ADS  Google Scholar 

  26. R. Bangerter. The Induction Approach to Heavy-Ion Inertial Fusion: Accelerator and Target Considerations. Il Nuovo Cimento, 106:1445, 1993.

    Article  Google Scholar 

  27. W. Meier, R. Bangerter, and A. Faltens. An Integrated Systems Model for Heavy Ion Drivers. Nucl. Inst. Meth. A, 415:249–255, 1997.

    Article  Google Scholar 

  28. C. Celata. Scientific Issues in Future Induction Linac Accelerators for Heavy-Ion Fusion. Nucl. Inst. Meth. A, 544:142–150, 2005.

    Article  ADS  Google Scholar 

  29. P. Seidl, C. Celata, A. Faltens, W. Fawley, W. Ghiorso, and S. Maclaren. Progress on the Scaled Beam Combining Experiment at LBNL. Nucl. Inst. Meth. A, 415:243–248, 1998.

    Article  Google Scholar 

  30. J.-L. Vay, M. Furman, P. Seidl, R. Cohen, A. Friedman, D. Grote, M. Kireeff Covo, A. Molvik, P. Stoltz, S. Veitzer, and J. Verboncoeur. Studies of the Physics of Space-Charge-Dominated Beams for Heavy Ion Inertial Fusion. Nucl. Inst. Meth. A, 577, 2007.

    Google Scholar 

  31. A. Molvik, M. Kireeff Covo, R. Cohen, A. Friedman, S. Lund, W. Sharp, J.-L. Vay, D. Baca, F. Bieniosek, C. Leister, and P. Seidl. Quantitative Experiments with Electrons in a Positively Charged Beam. Phys. Plasmas, 14:056701, 2007.

    Article  ADS  Google Scholar 

  32. W. Fawley, T. Garvey, S. Eylon, E. Henestroza, A. Faltens, T. Fessenden, K. Hahn, L. Smith, and D. Grote. Beam Dynamics Studies with the Heavy-Ion Linear Induction Accelerator MBE-4. Phys. Plasmas, 4:880, 1997.

    Article  ADS  Google Scholar 

  33. B. Logan. Exploring a Unique Vision for Heavy Ion Fusion. Technical Report HIFAN, Lawrence Berkeley Laboratory, 2008.

    Google Scholar 

  34. T. Sangster, J. Barnard, T. Cianciolo, G. Craig, A. Friedman, D. Grote, E. Halaxa, R. Hanks, G. Kamin, H. Kirbie, B. Logan, S. Lund, G. Mant, A. Molvik, W. M. Sharp, S. Eylon, D. Berners, T. Fessenden, D. Judd, L. Reginato, H. Hopkins, A. Debeling, W. Fritz, and J. Meredith. Status of Experiments Leading to a Small Recirculator. Nucl. Inst. Meth. A, 415:310–314, 1998.

    Article  Google Scholar 

  35. L. Ahle, T. Sangster, D. Autrey, J. Barnard, G. Craig, A. Friedman, D. Grote, E. Halaxa, B. Logan, S. Lund, G. Mant, A. Molvik, W. Sharp, S. Eylon, A. Debeling, and W. Fritz. Current Status of the Recirculator Project. In Proceedings of the 1999 Particle Accelerator Conference, pages 3248–3250, New York, NY, 29 March–2 April 1999.

    Google Scholar 

  36. R. Kishek, S. Bernal, Y. Cui, T. Godlove, I. Haber, J. Harris, Y. Huo, H. Li, P. O’Shea, B. Quinn, M. Reiser, M. Walter, M. Wilson, and Y. Zou. HIF Research on the University of Maryland Electron Ring (UMER). Nucl. Inst. Meth. A, 544:179–186, 2005.

    Article  ADS  Google Scholar 

  37. J. Wang, S. Bernal, P. Chin, T. Godlove, I. Haber, R. Kishek, Y. Li, M. Reiser, M. Venturini, R. York, and Y. Zou. Studies of the Physics of Space-Charge-Dominated Beams for Heavy Ion Inertial Fusion. Nucl. Inst. Meth. A, 415, 1998.

    Google Scholar 

  38. C. Celata, F. Bieniosek, and A. Faltens. Transverse Splitting of Intense Heavy-Ion Beams in the IRE and in an HIF Driver. Nucl. Inst. Meth. A, 464:533–538, 2001.

    Article  ADS  Google Scholar 

  39. National Research Council Committee on High Energy Density Physics, Plasma Science Committee. Frontiers in High Energy Density Physics: the X-Games of Contemporary Science. National Academies Press, Washington, DC, 2003.

    Google Scholar 

  40. National Task Force on High Energy Density Physics. Frontiers for Discovery in High Energy Density Physics. Office of Science and Technology Policy, National Science and Technology Council Interagency Working Group on the Physics of the Universe, 2004.

    Google Scholar 

  41. R. More, H. Yoneda, and H. Morikami. Short Pulse Lasers and Electron Dynamics in Warm Dense Matter. J. Quant. Spectros. Radiat. Trans., 99:409–424, 2006.

    Article  ADS  Google Scholar 

  42. T. Guillot. The Interiors of Giant Planets: Models and Outstanding Questions. Annu. Rev. Earth Planet. Sci., 33:493–530, 2005.

    Article  ADS  Google Scholar 

  43. N. Tahir, A. Shutov, I. Lomonosov, A. Piriz, G. Wouchuk, C. Deutsch, D. Hoffmann, and V. Fortov. Numerical Simulations and Theoretical Analysis of High Energy Density Experiments at the Next Generation of Ion Beam Facilities at Darmstadt: The Hedgehob Collaboration. High Energy Density Phys., 2:21–34, 2006.

    Article  ADS  Google Scholar 

  44. J. Barnard, P. Seidl, J. Coleman, and D. Ogata. Estimates of Energy Fluence at the Focal Plane in Beams Undergoing Neutralized Drift Compression. In Proceedings of the 2008 Linear Accelerator Conference, page MOP031, Victoria, Canada, 28 Sept.–3 Oct. 2008.

    Google Scholar 

  45. L. Northcliffe and R. Schilling. Range and Stopping-Power Tables for Heavy Ions. Nucl. Data Tables, A7:233, 1970.

    Article  ADS  Google Scholar 

  46. L. Grisham. Moderate Energy Ions for High Energy Density Physics Experiments. Phys. Plasmas, 11:5727, 2004.

    Article  ADS  Google Scholar 

  47. L. Landau and E. Lifshitz. Fluid Mechanics. Pergamon Press, New York, NY, 1959. see Chapter 10.

    Google Scholar 

  48. R. Harrach and F. Rogers. Comparison of Two Equation-of-State Models for Partially Ionized Aluminum: Zeldovich and Raizer’s Model Versus the Activity Expansion Code. J. Appl. Phys., 52:5592, 1981.

    Article  ADS  Google Scholar 

  49. S. Atzeni and J. Meyer ter Vehn. The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter. Oxford University Press, Inc, New York, NY, 2004.

    Google Scholar 

  50. J. Barnard, R. Briggs, D. Callahan, R. Davidson, A. Friedman, L. Grisham, E. Lee, R. Lee, B. Logan, C. Olson, D. Rose, P. Santhanam, A. Sessler, J. Staples, M. Tabak, D. Welch, J. Wurtele, and S. Yu. Accelerator and Ion Beam Tradeoffs for Studies of Warm Dense Matter. In Proceedings of the 2005 Particle Accelerator Conference, pages 2568–2570, Knoxville, TN, 16–20 May 2005.

    Google Scholar 

  51. D. Welch, J. Coleman, P. Seidl, P. Roy, E. Henestroza, E. Lee, A. Sefkow, E. Gilson, T. Genoni, and D. Rose. Source-to-Target Simulation of Simultaneous Longitudinal and Transverse Focusing of Heavy Ion Beams. Phys. Rev. Special Topics – Accelerators and Beams, 11, 2008.

    Google Scholar 

  52. A. Sefkow, R. Davidson, I. Kaganovich, E. Gilson, P. Roy, P. Seidl, S. Yu, D. Welch, D. Rose, and J. Barnard. Optimized Simultaneous Transverse and Longitudinal Focusing of Intense Ion Beam Pulses for Warm Dense Matter Applications. Nucl. Inst. Meth. A, 577:289–297, 2007.

    Article  ADS  Google Scholar 

  53. I. Kaganovich, R. Davidson, M. Dorf, E. Startsev, A. Sefkow, J. Barnard, A. Friedman, E. Lee, S. Lidia, B. Logan, P. Roy, P. Seidl, and D. Welch. Designing Neutralized Drift Compression for Focusing of Intense Ion Beam Pulses in Background Plasma. In Proceedings of the 2009 Particle Accelerator Conference, page TH3GA103, Vancouver, Canada, 4–8 May 2009.

    Google Scholar 

  54. F. Bieniosek, E. Henestroza, M. Leitner, B. Logan, R. More, P. Roy, P. Ni, P. Seidl, W. Waldron, and J.Barnard. High-Energy Density Physics Experiments with Intense Heavy Ion Beams. Nucl. Inst. Meth. A, 606:146–151, 2009.

    Article  ADS  Google Scholar 

  55. P. Roy, S. Yu, E. Henestroza, A. Anders, F. Bieniosek, J. Coleman, S. Eylon, W. Greenway, M. Leitner, B. Logan, W. Waldron, D. Welch, C. Thoma, A. Sefkow, E. Gilson, P. Efthimion, and R. Davidson. Drift Compression of an Intense Neutralized Ion Beam. Phys. Rev. Lett., 95:234801, 2005.

    Article  ADS  Google Scholar 

  56. P. Seidl, A. Anders, F. Bieniosek, J. Barnard, J. Calanog, A. Chen, R. Cohen, J. Coleman, M. Dorf, E. Gilson, D. Grote, J. Jung, M. Leitner, S. Lidia, B. Logan, P. Ni, P. Roy, K. Van den Bogert, W. Waldron, and D. Welch. Progress in Beam Focusing and Compression for Warm-Dense Matter Experiments. Nucl. Inst. Meth. A, 606:75–82, 2009.

    Article  ADS  Google Scholar 

  57. A. Friedman, J. Barnard, R. Briggs, R. Davidson, M. Dorf, D. Grote, E. Henestroza, E. Lee, M. Leitner, B. Logan, A. Sefkow, W. Sharp, W. Waldron, D. Welch, and S. Yu. Toward a Physics Design for NDCX-II, an Ion Accelerator for Warm Dense Matter and HIF Target Physics Studies. Nucl. Inst. Meth. Phys. Res. A, 606:6–10, 2009.

    Article  ADS  Google Scholar 

  58. A. Friedman, J. Barnard, R. Cohen, D. Grote, S. Lund, W. Sharp, A. Faltens, E. Henestroza, J.-Y. Jung, J. Kwan, E. Lee, M. Leitner, B. Logan, J.-L. Vay, W. Waldron, R. Davidson, M. Dorf, E. Gilson, and I. Kaganovich. Beam Dynamics of the Neutralized Drift Compression Experiment-II, a Novel Pulse-Compressing Ion Accelerator. Phys. Plasmas, 17:056704, 2010.

    Article  ADS  Google Scholar 

  59. S. Henderson. Spallation Neutron Source Progress, Challanges and Upgrade Options. In Proceedings of the 2008 European Particle Accelerator Conference, page 2892, Genoa, Italy, 23–27 June 2008.

    Google Scholar 

  60. M. Kinsho. J-PARC Progress and Challanges of Protron Synchrotrons. In Proceedings of the 2008 European Particle Accelerator Conference, page 2897, Genoa, Italy, 23–27 June 2008.

    Google Scholar 

  61. D. Keefe and E. Hoyer. Proton Induction Linacs as High-Intensity Neutron Sources. Technical Report LBL-12855; CONF-8106120-4, Lawrence Berkeley Lab, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Barnard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barnard, J.J., Briggs*, R.J. (2011). Applications of Ion Induction Accelerators. In: Takayama, K., Briggs, R. (eds) Induction Accelerators. Particle Acceleration and Detection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13917-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13917-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13916-1

  • Online ISBN: 978-3-642-13917-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics