Skip to main content

Defects

  • Chapter
  • First Online:
The Physics of Semiconductors

Part of the book series: Graduate Texts in Physics ((GTP))

  • 9299 Accesses

Abstract

In an ideal lattice each atom is at its designated position. Deviations from the ideal structure are called defects. In the following, we will briefly discuss the most common defects. The electrical activity of defects will be discussed in Sects. 7.5 and 7.7. For the creation (formation) of a defect a certain free enthalpy Gf D is necessary. At thermodynamical equilibrium a (point) defect density exp _−Gf D/kT_ will always be present (cf. Sect. 4.2.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Bishop, How to Win the Nobel Prize (Harvard University Press, Cambridge, 2003)

    Google Scholar 

  2. G. Busch, Early history of the physics and chemisty of semiconductors - from doubts to fact in a hundred years. Eur. J. Phys. 10, 254–264 (1989)

    Article  Google Scholar 

  3. K.C. Handel, Anf¨ange der halbleiterforschung und -entwicklung. Dargestellt an den Biographien von vier deutschen Halbleiterpionieren, PhD thesis, RWTH Aachen (1999)

    Google Scholar 

  4. S. Bidwell, Proc. Phys. Soc. London 7, 129 (1885)

    Article  Google Scholar 

  5. J.Z. Buchwald, Centaurus 23, 51–99 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  6. R.S. Ohl, Light-sensitive electric device, US patent 2,402,662, filed 1941, awarded 1946

    Google Scholar 

  7. N. Bernstein, M.J. Mehl, D.A. Papaconstantopoulos, N.I. Papanicolaou, M.Z. Bazant, E. Kaxiras, Phys. Rev. B 62, 4477 (2000)

    Article  ADS  Google Scholar 

  8. M.T. Yin, M.L. Cohen, Phys. Rev. Lett. 45, 1004 (1980)

    Article  ADS  Google Scholar 

  9. J. Bardeen, W. Shockley, Phys. Rev. 80, 72 (1950)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. J.C. Phillips, J.A. Van Vechten, Phys. Rev. Lett. 23, 1115 (1969)

    Article  ADS  Google Scholar 

  11. S. Takeuchi, K. Suzuki, Phys. Stat. Sol. (A) 171, 99 (1999)

    Article  ADS  Google Scholar 

  12. C. Domke, Ph. Ebert, M. Heinrich, K. Urban, Phys. Rev. Lett. 54, 10288 (1996)

    Google Scholar 

  13. Ph. Ebert, X. Chen, M. Heinrich, M. Simon, K. Urban, M.G. Lagally, Phys. Rev. Lett. 76, 2089 (1996)

    Article  ADS  Google Scholar 

  14. R.M. Feenstra, J.M. Woodall, G.D. Pettit, Phys. Rev. Lett. 71, 1176 (1993)

    Article  ADS  Google Scholar 

  15. R.B. Capaz, K. Cho, J.D. Joannopoulos, Phys. Rev. Lett. 75, 1811 (1995)

    Article  ADS  Google Scholar 

  16. R. Jones, A. Carvalho, J.P. Goss, P.R. Briddon, Mat. Sci Engin. B 159, 112 (2008)

    Article  Google Scholar 

  17. S.J. Clark, Complex structure in tetrahedral semiconductors, PhD Thesis, University of Edinburgh, 1994

    Google Scholar 

  18. M. Lannoo, J. Bourgoin, Point Defects in Semiconductors I (Springer, Berlin, 1981)

    Google Scholar 

  19. S. Lee, G.S. Hwang, Phys. Rev. B 78, 125310 (2008)

    Article  ADS  Google Scholar 

  20. H. Bracht, N.A. Stolwijk, H. Mehrer, Phys. Rev. B 52, 16542 (1995)

    Article  ADS  Google Scholar 

  21. V. Ranki, K. Saarinen, Phys. Rev. Lett. 93, 255502 (2004)

    Article  ADS  Google Scholar 

  22. J. Gebauer, M. Lausmann, F. Redmann, R. Krause-Rehberg, H.S. Leipner, E.R. Weber, Ph. Ebert, Phys. Rev. B 67, 235207 (2003)

    Article  ADS  Google Scholar 

  23. F. Morehead, N. Stolwijk, W. Meyberg, U. G¨osele, Appl. Phys. Lett. 42, 690 (1983)

    Article  ADS  Google Scholar 

  24. S. Dannefaer, P. Mascher, D. Kerr, Phys. Rev. Lett. 56, 2195 (1986)

    Article  ADS  Google Scholar 

  25. P.M. Fahey, P.B. Griffin, J.D. Plummer, Rev. Mod. Phys. 61, 289–384 (1989)

    Article  ADS  Google Scholar 

  26. P. Pichler, Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon (Springer, Berlin, 2004)

    Google Scholar 

  27. G.D. Watkins, J. Appl. Phys. 103, 106106 (2008)

    Article  ADS  Google Scholar 

  28. Y. Shimizu, M. Uematsu, K.M. Itoh, Phys. Rev. Lett. 98, 095901 (2007)

    Article  ADS  Google Scholar 

  29. J.-W. Jeong, A. Oshiyama, Phys. Rev. B 64, 235204 (2001)

    Article  ADS  Google Scholar 

  30. W. Windl, Appl. Phys. Lett. 92, 202104 (2008)

    Article  ADS  Google Scholar 

  31. K.-S. Yoon, C.-O. Wang, J.-H. Yoo, T. Won, J. Korean Phys. Soc. 48, 535 (2006)

    Google Scholar 

  32. X.-Y. Liu, W. Windl, K.M. Beardmore, M.P. Masquelier, Appl. Phys. Lett. 82, 1839 (2003)

    Article  ADS  Google Scholar 

  33. L. Rayleigh, Philos. Mag. 4, 521 (1902)

    Google Scholar 

  34. W. Zulehner, Metrologia 31, 255 (1994)

    Article  ADS  Google Scholar 

  35. I. Yonenaga, T. Ayuzawa, J. Cryst. Growth 297, 14 (2006)

    Article  ADS  Google Scholar 

  36. W.G. Pfann, Techniques of zone melting and crystal growing. Solid State Phys. 4, 423 (1957)

    Article  Google Scholar 

  37. W.C. O’Mara, R.B. Herring, L.P. Hunt (eds.), Handbook of Semiconductor Silicon Technology (Noyes, Berkshire, 1990)

    Google Scholar 

  38. J.J. Dowd, R.L. Rouse, Proc. Phys. Soc. B 66, 60 (1953)

    Article  ADS  Google Scholar 

  39. Landolt-B¨ornstein, in New Series, Semiconductors, ed. by O. Madelung, M. Schulz, H. Weiss. Numerical Data and Functional Relationships in Science and Technology, vol. 17 (Springer, Berlin, 1982)

    Google Scholar 

  40. M. Nastasi, J.W. Mayer, Ion Implantation and Synthesis of Materials (Springer, Berlin, 2006)

    Book  Google Scholar 

  41. A. Benninghoven, F.G. Rudenauer, H.W.Werner (eds.), Secondary Ion Mass Spectrometry (John Wiley & Sons, New York, 1987)

    Google Scholar 

  42. S. Uppal, A.F.W. Willoughby, J.M. Bonar, A.G.R. Evans, N.E.B Cowern, R. Morris, M.G. Dowsett, J. Appl. Phys. 90, 4293 (2001)

    Article  ADS  Google Scholar 

  43. R.F. Lever, K.W. Brannon, J. Appl. Phys. 69, 6369 (1991)

    Article  ADS  Google Scholar 

  44. www.srim.org

  45. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM – The Stopping and Range of Ions in Matter (Lulu Press, Morrisville, 2006)

    Google Scholar 

  46. K. Kimura, Y. Oota, K. Nakajima, T.H. B¨uy¨uklimanli, Curr. Appl. Phys. 3, 9 (2003)

    Article  Google Scholar 

  47. R.Wittmann, Miniaturization Problems in CMOS Technology: Investigation of Doping Profiles and Reliability, PhD Thesis, TU Wien, 2007

    Google Scholar 

  48. J. Yokota, J. Phys. Soc. Jpn. 19, 1487 (1964)

    Article  ADS  Google Scholar 

  49. D.A.W. Soarez, C.A. Pimentel, J. Appl. Cryst. 16, 486 (1983)

    Article  Google Scholar 

  50. H.R. Vydyanath, J.S. Lorenzo, F.A. Kr¨oger, J. Appl. Phys. 49, 5928 (1978)

    Article  ADS  Google Scholar 

  51. P. De´ak, A. Gali, A. S´olynom, A. Buruzs, Th. Fraunheim, J. Phys.: Condens. Matter 17, S2141–2153 (2005) and references therein

    Article  ADS  Google Scholar 

  52. B.P. Uberuaga, G. Henkelman, H. J´onsson, S.T. Dunham, W. Windl, R. Stumpf, Phys. Stat. Sol. (B) 233, 24 (2002)

    Article  ADS  Google Scholar 

  53. M.J. Caturla, M.D. Johnson, T.D. de la Rubia, Appl. Phys. Lett. 72, 2736 (1998)

    Article  ADS  Google Scholar 

  54. F.A. Trumbore, Bell Syst. Tech. J. 39, 205–33 (1960)

    Google Scholar 

  55. V.E. Borisenko, S.G. Yudin, Phys. Stat. Sol. (A) 101, 123 (1987)

    Article  ADS  Google Scholar 

  56. J. Adey, R. Jones, P.R. Briddon, J. Phys.: Condens. Matter 16, 9117 (2004)

    Article  ADS  Google Scholar 

  57. S. Fischler, J. Appl. Phys. 33, 1615 (1962)

    Article  ADS  Google Scholar 

  58. F.S. Shishiyanu, V.G. Gheorghiu, S.K. Palazov, Phys. Stat. Sol. (A) 40, 29 (1977)

    Article  ADS  Google Scholar 

  59. M. Luysberg, R. G¨obel, H. Janning, J. Vac. Sci. Technol. B 12, 2305 (1984)

    Article  Google Scholar 

  60. N.A. Smith, I.R. Harris, B. Cockayne, W.R. MacEwan, J. Cryst. Growth 68, 517 (1984)

    Article  ADS  Google Scholar 

  61. J.P. Hirth, A brief history of dislocation theory. Metall. Mat. Transact. A 16, 2085–90 (1985)

    Article  ADS  Google Scholar 

  62. S. Kret, Pawel Dłu˙zewski, Piotr Dłu˙zewski, J.-Y. Laval, Philos. Mag. 83, 231 (2003). Also at info.ifpan.edu.pl/SL-1/sl14sub/dys1.htm

    Article  ADS  Google Scholar 

  63. A.R. Smith, V. Ramachandran, R.M. Feenstra, D.W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, J.E. Northrup, J. Vac. Sci. Technol. A 16, 1641 (1998)

    Article  ADS  Google Scholar 

  64. S.N.G. Chu, W.T. Tsang, T.H. Chiu, A.T. Macrander, J. Appl. Phys. 66, 521 (1989)

    Article  ADS  Google Scholar 

  65. J.G. Grabmaier, C.B. Watson, Phys. Stat. Sol. 32, K13 (1969)

    Article  ADS  Google Scholar 

  66. M. Horn-von Hoegen, F.K. LeGoues, M. Copel, M.C. Reuter, R.M. Tromp, Phys. Rev. Lett. 67, 1130 (1991)

    Article  ADS  Google Scholar 

  67. R.B. Heimann, Aufl¨osung von Kristallen (Springer, Wien, 1975)

    Google Scholar 

  68. K. Sato, M. Shikida, T. Yamashiro, K. Asaumi, Y. Iriye, M. Yamamoto, Sens. Actuat. 73, 131 (1999)

    Article  Google Scholar 

  69. A.F. Bogensch¨utz, ¨ Atzpraxis f¨ur Halbleiter (Carl Hanser, M¨unchen, 1967) (in German)

    Google Scholar 

  70. K. Ishida, H. Kawano, Phys. Stat. Sol. (A) 98, 175 (1986)

    Article  ADS  Google Scholar 

  71. J.L. Weyher, J. van de Ven, J. Cryst. Growth 78, 191–217 (1986)

    Article  ADS  Google Scholar 

  72. M. K¨ohler, Etching in Microsystem Technology (Wiley-VCH, Weinheim, 1999)

    Book  Google Scholar 

  73. J. Fr¨uhauf, Shape and Functional Elements of the Bulk Silicon Microtechnique: A Manual of Wet-Etched Silicon Structures (Springer, Berlin, 2005)

    Google Scholar 

  74. D.M. Manos, D.L. Flamm (eds.), Plasma Etching: An Introduction (Academic Press, San Diego, 1988)

    Google Scholar 

  75. J.W. Coburn, Plasma etching and reactive ion etching: Fundamentals and Applications. American Vacuum Society Monograph Series (AVS, New York, 1982)

    Google Scholar 

  76. V. Smaminathan, A.S. Jordan, Dislocations in III/V compounds, Semicond. Semimet. 38, 294 (1993)

    Google Scholar 

  77. T. Kamejima, J. Matsui, Y. Seki, H. Watanabe, J. Appl. Phys. 50, 3312 (1979)

    Article  ADS  Google Scholar 

  78. L. Wang, W. Jie, Y. Yang, G. Xu, L. Fu, J. Cryst. Growth 310 2810 (2008)

    Article  ADS  Google Scholar 

  79. S. Mader, A.E. Blakeslee, Appl. Phys. Lett. 25, 365 (1974)

    Article  ADS  Google Scholar 

  80. M. Sato, K. Sumino, K. Hiraga, Phys. Stat. Sol. (A) 68, 567 (1981)

    Article  ADS  Google Scholar 

  81. D.J.H. Cockayne, P.B. Hirsch, V. Vitek, Philos. Mag. 31, 105 (1975)

    Article  ADS  Google Scholar 

  82. D. Gerthsen, C.B. Carter, Phys. Stat. Sol. (A) 136, 29 (1993)

    Article  ADS  Google Scholar 

  83. P. Pirouz, D.J.H. Cockayne, N. Shimada, P. Hirsch, A.R. Lang, Proc. Roy. Soc. London A 386, 241 (1983)

    Article  ADS  Google Scholar 

  84. H. Gottschalk, G. Patzer, H. Alexander, Phys. Stat. Sol. (A) 45, 207 (1978)

    Article  ADS  Google Scholar 

  85. S. Takeuchi, K. Suzuki, K. Maeda, Philos. Mag. A 50, 171 (1984)

    Article  ADS  Google Scholar 

  86. NREL, www.nrel.gov/measurements/trans.html

  87. Z. Liliental-Weber, H. Sohn, J. Washburn, Structural defects in epitaxial III/V layers, Semicond. Semimet. 38, 397 (1993)

    Article  Google Scholar 

  88. Y. Hao, G. Meng, Zh.L. Wang, Ch. Ye, L. Zhang, Nano Lett. 6, 1650 (2006)

    Article  ADS  Google Scholar 

  89. S. Amelinckx, W. Dekeyser, The structure and properties of grain boundaries. Solid State Phys. 8, 325 (1959)

    Article  Google Scholar 

  90. C.R.M. Grovenor, J. Phys. C: Solid State Phys. 18, 4079–119 (1985)

    Article  ADS  Google Scholar 

  91. C. Fontaine, D.A. Smith, Appl. Phys. Lett. 40, 153 (1982)

    Article  ADS  Google Scholar 

  92. H. Sawada, H. Ichinose, M. Kohyama, J. Electron Microsc. 51, 353 (2002)

    Article  Google Scholar 

  93. F.L. Vogel, W.G. Pfann, H.E. Corey, E.E. Thomas, Phys. Rev. 90, 489 (1953)

    Article  ADS  Google Scholar 

  94. H. F¨oll, www.tf.uni-kiel.de/matwis/amat/def en/index.html

  95. H. F¨oll, D. Ast, Philos. Mag. A 40, 589 (1979)

    Article  ADS  Google Scholar 

  96. F. Wolf, W. Mader, Optik 110, Suppl. 8 (1999)

    Google Scholar 

  97. M. Grundmann, A. Krost, D. Bimberg, J. Cryst. Growth 107, 494 (1991)

    Article  ADS  Google Scholar 

  98. W. Mader, private communication (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Grundmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grundmann, M. (2010). Defects. In: The Physics of Semiconductors. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13884-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13884-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13883-6

  • Online ISBN: 978-3-642-13884-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics