Detecting Spam Bots in Online Social Networking Sites: A Machine Learning Approach

  • Alex Hai Wang
Conference paper

DOI: 10.1007/978-3-642-13739-6_25

Volume 6166 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Wang A.H. (2010) Detecting Spam Bots in Online Social Networking Sites: A Machine Learning Approach. In: Foresti S., Jajodia S. (eds) Data and Applications Security and Privacy XXIV. DBSec 2010. Lecture Notes in Computer Science, vol 6166. Springer, Berlin, Heidelberg

Abstract

As online social networking sites become more and more popular, they have also attracted the attentions of the spammers. In this paper, Twitter, a popular micro-blogging service, is studied as an example of spam bots detection in online social networking sites. A machine learning approach is proposed to distinguish the spam bots from normal ones. To facilitate the spam bots detection, three graph-based features, such as the number of friends and the number of followers, are extracted to explore the unique follower and friend relationships among users on Twitter. Three content-based features are also extracted from user’s most recent 20 tweets. A real data set is collected from Twitter’s public available information using two different methods. Evaluation experiments show that the detection system is efficient and accurate to identify spam bots in Twitter.

Download to read the full conference paper text

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alex Hai Wang
    • 1
  1. 1.College of Information Sciences and TechnologyThe Pennsylvania State UniversityDunmoreUSA