Skip to main content

Cold-Tolerant Agriculturally Important Microorganisms

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 18))

Abstract

Cold-tolerant microorganisms are endowed with the ability to grow at 0°C, though their growth optima lie in the mesophilic range. To overcome the stress induced by low temperatures they have evolved a variety of adaptive responses at the cellular and molecular levels. Multiple cell membrane modifications ensure that solute transport is not impaired at low temperatures. Other mechanisms include the synthesis of cold-shock proteins (Csps), cold acclimation proteins (Caps), cryoprotectants, ice nucleation factors, cold-adapted enzymes, and RNA degradosomes. The agricultural importance of such microbes stems from the fact that the world over temperate agro-ecosystems are characterized by low temperatures and short growing seasons that subject both plant and microbial life to cold temperature induced stress. Hence, there is a need to identify potential microbes that retain their functional traits under low temperature conditions. Such microbes can be profitably used as inoculants in agricultural production systems in the temperate regions of the world. This chapter deals with the cold tolerance/resistance mechanisms operating in microorganisms and the utility of cold-tolerant microbes in improving soil quality and productivity of agricultural crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson JA, Buchanan DW, Stall RE, Hall CB (1982) Frost injury of tender plants increased by Pseudomonas syringae van Hall. Am Soc Hort Sci 107:123–125

    CAS  Google Scholar 

  • Andrews JH, Harris RF (2003) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  Google Scholar 

  • Angelidis AS, Smith GM (2003) Role of glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium. Appl Environ Microbiol 69:7492–7498

    Article  PubMed  CAS  Google Scholar 

  • Annous BA, Becker LA, Bayles DO, Labeda DP, Wilkinson BJ (1997) Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63:3887–3894

    PubMed  CAS  Google Scholar 

  • Bae W, Xia B, Inouye M, Severinov K (2000) E. coli, Csp A – family RNA chaperone are transcription antiterminators. Proc Nat Acad Sci USA 97:7784–7789

    Article  PubMed  CAS  Google Scholar 

  • Baleiras-Couto MM, Huis-In’t-Veld JHJ (1995) Influence of ethanol and temperature on the cellular fatty acid composition of Zygosaccharomyces bailii spoilage yeasts. J Appl Bacteriol 78:327–333

    Article  PubMed  CAS  Google Scholar 

  • Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Bayles DO, Annous BA, Wilkinson BJ (1996) Cold stress proteins induced in Listeria monocytogenes is responsible for temperature downshock and growth at low temperatures. Appl Environ Microbiol 62:1116–1119

    PubMed  CAS  Google Scholar 

  • Bric JM, Bostock RM, Silverstone SR (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Microbiol 57:535–538

    CAS  Google Scholar 

  • Chattopadhyay MK (2002) Glycine betaine is a bacterial cryoprotectant and is believed to act by stabilizing cellular proteins and membranes at low temperature. Resonance 7:59–63

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    Article  PubMed  CAS  Google Scholar 

  • Chung H, Par M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plant of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Cloutier J, Prevost D, Nadeau P, Antoun H (1992) Heat and cold shock protein synthesis in artic and temperate strains of rhizobia. Appl Environ Microbiol 58:2846–2853

    PubMed  CAS  Google Scholar 

  • D’Amico S, Marx JC, Gerday C, Feller G (2003) Activity–stability relationships in extremophilic enzymes. J Biol Chem 278:7891–7896

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Colins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: a challenge for life. EMBO Rep 7:385–389

    Article  PubMed  CAS  Google Scholar 

  • Das K, Katiyar V, Goel R (2003) P solubilization potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiol Res 158:359–362

    Article  PubMed  Google Scholar 

  • Deming JW (2002) Psychrophiles and Polar regions. Curr Opin Microbiol 5:301–309

    Article  PubMed  CAS  Google Scholar 

  • Denarie J, Debelle F, Rosenberg C (1992) Signalling and host range variation in nodulation. Annu Rev Microbiol 46:497–531

    Article  PubMed  CAS  Google Scholar 

  • Drouin P, Prevost D, Antoun H (2000) Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp. FEMS Microbiol Ecol 32:111–120

    PubMed  CAS  Google Scholar 

  • Dufrenne J, Delfgou E, Ritmeester W, Notermans S (1997) The effect of previous growth conditions on the lag phase time of some foodborne pathogenic microorganisms. Int J Food Microbiol 34:89–94

    Article  PubMed  CAS  Google Scholar 

  • Escalana NG, Fey A, Hofle MG, Espejo RT, Guzman CA (2006) Quantitative reverse transcription polymerase chain reaction analysis of Vibrio cholerae cells entering the viable but non-culturable state and starvation in response to cold shock. Environ Microbiol 8:658–666

    Article  CAS  Google Scholar 

  • Evans RI, McClure PJ, Gould GW, Russel NJ (1998) The effect of growth temperature on the phospholipid and fatty acyl compositions of non-proteolytic Clostridium botulinum. Int J Food Microbiol 40:159–167

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topic in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  PubMed  CAS  Google Scholar 

  • Forster J (1887) Ueber einige Eigenschaften leuchtender Bakterien Centr. Bakteriol Parasitenk 2:337–340

    Google Scholar 

  • Fujii DK, Fulco A (1977) Biosynthesis of unsaturated fatty acids by Bacilli, hyper induction and modulation of desaturase synthesis. J Biol Chem 252:3660–3670

    PubMed  CAS  Google Scholar 

  • Geiger O, Spaink HP, Lugtenberg BJJ (1993) Biosynthesis of lipo-oligosaccharides: phospholipids of Rhizobium contain nod E-determined highly unsaturated fatty acid moieties. In: Palacios R, Mora J, Newton WE (eds) New horizons in nitrogen fixation. Kluwer, Dordrecht, p 233

    Google Scholar 

  • Glick BR, Penrose DM, Jiping L (1998) A model for the lowering plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria. Biol Agric Hort 12:185–193

    Article  Google Scholar 

  • Goldstein J, Pollitt NS, Inouye M (1990) Major cold shock proteins of Escherichia coli. Proc Natl Acad Sci USA 87:283–287

    Article  PubMed  CAS  Google Scholar 

  • Graumann P, Marahiel MA (1998) A superfamily of proteins containing the cold shock domain. Trends Biochem Sci 23:286–290

    Article  PubMed  CAS  Google Scholar 

  • Graumann P, Schroder K, Schmid R, Marahiel MA (1996) Cold shock stress induced proteins in Bacillus subtilis. J Bacteriol 178:4611–4619

    PubMed  CAS  Google Scholar 

  • Greenland D, Losleben M (2001) Structure and function of an alpine ecosystem. In: Bowman WD, Seastedt TR (eds) Climate. Oxford University Press, Niwot Ridge, CO, pp 15–31

    Google Scholar 

  • Gulati A, Vyas P, Rai P, Kasana RC (2009) Plant growth promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377

    Article  PubMed  CAS  Google Scholar 

  • Hebraud M, Dubois E, Potier P, Labadie J (1994) Effect of growth temperature on the protein levels in the psychrotrophic bacterium Pseudomonas fragi. J Bacteriol 176:4017–4024

    PubMed  CAS  Google Scholar 

  • Herbert RA (1986) The ecology and physiology of psychrotrophic micro-organism. In: Herbert RA, Codd GA (eds) Society for gen microbiology. Academic, London, pp 1–24

    Google Scholar 

  • Herbraud M, Potier P (1999) Cold shock response and low temperature adaptation in psycrophilic bacteria. J Mol Microbiol Biotechnol 1:211–219

    Google Scholar 

  • Hoang LC, Dumomt F, Marechal PA, Thanh ML, Gervais P (2007) Rates of chilling to 0°C: implication for the survival of microorganisms and relationship with membrane fluidity modification. Appl Microbiol Biotechnol 77:1379–1387

    Article  CAS  Google Scholar 

  • Horn G, Hofweber W, Kremer W, Kalbitzer HR (2007) Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64:1457–1470

    Article  PubMed  CAS  Google Scholar 

  • Howard DH (1999) Acquisition, transport and storage of iron by pathogenic fungi. Clin Microbiol Rev 12:394–404

    PubMed  CAS  Google Scholar 

  • Jiang W, Hou Y, Inouye M (1997) The major cold shock proteins of E. coli, is an RNA chaperone. J Biol Chem 272:196–202

    Article  PubMed  CAS  Google Scholar 

  • Johns GC, Somero GN (2004) Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.). Mol Biol Evol 21:314–320

    Article  PubMed  CAS  Google Scholar 

  • Jones PG, Inouye M (1996) RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Mol Microbiol 21:1207–1218

    Article  PubMed  CAS  Google Scholar 

  • Jones PG, VanBogelen RA, Neidhart (1987) Induction of proteins on response to low temperature in E. coli. J Bacteriol 169:2092–2095

    PubMed  CAS  Google Scholar 

  • Kaasen I, Falkenberg P, Styrvold OB, Stroem AR (1992) Molecular cloning and physical mapping of the otsBA genes, which encode the osmo-regulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by Kat F(AppR). J Bacteriol 174:889–898

    PubMed  CAS  Google Scholar 

  • Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA 99:9727–9732

    Article  PubMed  CAS  Google Scholar 

  • Karner MB, Delong EF, Karl DM (2001) Archeal dominance in the mesophilic zone of Pacific Ocean. Nature 409:507–510

    Article  PubMed  CAS  Google Scholar 

  • Katiyar V, Goel R (2003) Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res 158:163–168

    Article  PubMed  CAS  Google Scholar 

  • Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by a mutant fluorescent pseudomonad. Plant Growth Regul 42:239–244

    Article  CAS  Google Scholar 

  • Kaushik R, Saxena AK, Tilak KVBR (2000) Selection of Tn5::lac Z mutants isogenic to wild type Azospirillum brasilense strains capable of growing at sub-optimal temperature. World J Microbiol Biotechnol 16:567–570

    Article  Google Scholar 

  • Kaushik R, Saxena AK, Tilak KVBR (2001) Selection and evaluation of Azospirillum brasilense strains capable of growing at sub-optimal temperature in rhizocoenosis with wheat. Folia Microbiol 46:327–332

    Article  CAS  Google Scholar 

  • Kaushik R, Saxena AK, Tilak KVBR (2002) Can Azospirillum strains capable of growing at a sub-optimal temperature perform better in field-grown-wheat rhizosphere. Biol Fertil Soils 35:92–95

    Article  Google Scholar 

  • Kawahara H, Koda N, Oshio M, Obata H (2000) A cold acclimation protein with refolding activity on frozen denatured enzyme. Biosci Biotechnol Biochem 64:2668–2774

    Article  PubMed  CAS  Google Scholar 

  • Kim KY, Hwangbo H, Kim YW, Kim HJ, Park KH, Kim YC, Seoung KY (2002) Organic acid production and phosphate solubilization by Enterobacter intermedium 60-2G. Korean J Soil Sci Fert 35:59–67

    Google Scholar 

  • Klein W, Weber MHW, Marahiel MA (1999) Cold shock response of Bacillus subtilis: isoleucine dependent switch in the fatty acid branching pattern adaptation to low temperatures. J Bacteriol 181:5341–5349

    PubMed  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, Gilbert-Clarey, Tours, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature (London) 286:885–886

    Article  CAS  Google Scholar 

  • Knight CA, Hallett J, Devries AL (1988) Solute effects on ice recrystallization: an assessment technique. Cryobiology 25:55–60

    Article  PubMed  CAS  Google Scholar 

  • Kottmier ST, Sullivan CW (1990) Bacterial biomass and production in pack ice of Antarctica marginal ice age zones. Deep-Sea Res 37:1311–1330

    Article  Google Scholar 

  • Kozloff LM, Schofield MA, Lute M (1983) Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola. J Bacteriol 153:222–231

    PubMed  CAS  Google Scholar 

  • Lavania M, Chauhan PS, Chauhan SVS, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52:363–368

    Article  PubMed  CAS  Google Scholar 

  • Lee RE, Warren GJ, Gusta LV (1995) Biochemistry of bacterial ice nuclei. In: Ray F, Paul WK (eds) Biological ice nucleation and its application. APS Press, St Paul, MN, pp 63–83

    Google Scholar 

  • Lillford PJ, Holt CB (2002) In vitro uses of biological cryoprotectants. Philos Trans R Soc Lond B Biol Sci 357:945–951

    Article  PubMed  CAS  Google Scholar 

  • Lindow SE (1983) The role of bacterial ice nucleation in frost injury to plants. Annu Rev Phytopathol 21:363–384

    Article  Google Scholar 

  • Lindow SE, Arny DC, Upper CD (1978) Erwinia herbicola: a bacterial ice nucleus active in increasing frost injury to corn. Phytopathol 68:523–527

    Article  Google Scholar 

  • Lynch DH, Smith DL (1994) The effects of low temperature stress on two soybean (Glycine max) genotypes when combined with Bradyrhizobium strains of varying geographic origin. Physiol Plant 90:105–113

    Article  Google Scholar 

  • Maki IR, Galyon EL, Chang-Chien M, Cald WDR (1974) Ice nucleation induced by Pseudomonas syringae. Appl Microbiol 28:456–460

    PubMed  CAS  Google Scholar 

  • Malviya MK, Pandey A, Trivedi P, Gupta G, Kumar B (2009) Chitinolytic activity of cold tolerant antagonistic species of Streptomyces isolated from glacial sites of Indian Himalaya. Curr Microbiol 59:502–508

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Schinner F (1999) Cold adapted organisms Ecology, Physiology, Enzymology, and Molecular biology. Springer, Berlin

    Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals-fundamental and applied aspects. Naturewisenschaften 94:77–99

    Article  CAS  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soil 30:433–439

    Article  CAS  Google Scholar 

  • Mastronicolis SK, German JB, Megoulas N, Petrou E, Foka P, Smith GM (1998) Influence of cold shock on the fatty acid composition of different lipid classes of the food borne pathogen Listeria monocytogenes. Food Microbiol 15:299–306

    Article  CAS  Google Scholar 

  • Mayr B, Kaplan T, Lechner S, Scherer S (1996) Identification and purification of a family of dimeric major cold shock protein homologous from the psychrotrophic Bacillus cereus WSBC 10201. J Bacteriol 178:2916–2925

    PubMed  CAS  Google Scholar 

  • McBeath J (1995) Cold tolerant Trichoderma. US Patent #5,418,165

    Google Scholar 

  • McCue P, Zheng Z, Pinkham JL, Shetty K (2000) A model for enhanced pea seedling vigour following low pH and salicylic acid treatments. Proc Biochem 35:603–613

    Article  CAS  Google Scholar 

  • McGibbon L, Russel NJ (1983) Fatty acid positional distribution in phospholipids of a psychrophilic bacterium during changes in growth temperature. Curr Microbiol 9:241–244

    Article  CAS  Google Scholar 

  • McKay IA, Djordjevic MA (1993) Production and excretion of nod metabolites by Rhizobium leguminosarum bv. trifolii are disrupted by the same environmental factors that reduce nodulation in the field. Appl Environ Microbiol 59:3385–3392

    PubMed  CAS  Google Scholar 

  • Michel V, lehoux I, Hebraud (1997) The cold shock response of the psychrotrophic bacterium Pseudomonas fragi. Curr Microbiol 33:16–25

    Article  Google Scholar 

  • Misaghi IJ, Stowell LJ, Grogan RG, Spearman LC (1982) Fungistatic activity of water-soluble fluorescent pigments of fluorescent pseudomonads. Phytopathology 72:33–36

    Article  CAS  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht SC, Bisht JK, Gupta HS (2008) Characterization of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:561–568

    Article  Google Scholar 

  • Mishra PK, Bisht SC, Pooja R, Joshi P, Suyal P, Bisht JK, Srivastva AK (2009c) Enhancement of chilling tolerance and productivity of inoculated wheat with cold tolerant plant growth promoting Pseudomonas spp. PPERs23. Abstract 4th USSTC. Nov 10–12, 2009

    Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Bisht JK (2009b) Enhancement of chilling tolerance of inoculated wheat seedlings with cold tolerant plant growth promoting Pseudomonads from N.W. Himalayas. Abstract Ist Asian PGPR conference. Jun 22–24, 2009

    Google Scholar 

  • Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009c) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313

    Article  PubMed  CAS  Google Scholar 

  • Mitta M, Fang L, Inouye M (1997) Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol Microbiol 26:321–335

    Article  PubMed  CAS  Google Scholar 

  • Morita RY (1975) Psycrophilic bacteria. Bacteriol Rev 39:144–167

    PubMed  CAS  Google Scholar 

  • Muryoi N, Sato M, Kaneko S, Kawaahara H, Obata H, Yaish MWF, Griffth M, Glick BR (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the Arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol 186:5661–5671

    Article  PubMed  CAS  Google Scholar 

  • Negi YK, Kumar J, Garg SK (2005) Cold-tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and biocontrol agents in pea. Curr Sci 89:2151–2156

    Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731

    Article  PubMed  CAS  Google Scholar 

  • Neilands JD (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    PubMed  CAS  Google Scholar 

  • Obata H, Kakinami K, Tanishita J, Hasegawa Y (1990) Identification of new Ice-nucleating bacterium and its ice nucleation properties. Agric Biol Chem 54:725–730

    Article  CAS  Google Scholar 

  • Olson JC, Nottingham PM (1980) Temperature in microbial ecology of foods volume 1: factors affecting life and death of microorganisms. International Commission on Microbiological specifications for foods, Academic Press, London, pp 1–37

    Google Scholar 

  • Pandey A, Trivedi P, Palni LMS (2006) Characterization of phosphate solubilizing and antagonistic strain of Pseudomonas putida (BO) Isolated from a sub-alpine location in the Indian Central Himalaya. Curr Microbiol 53:102–107

    Article  PubMed  CAS  Google Scholar 

  • Panicker G, Aislabie SD, Bej AK (2002) Cold tolerance of Pseudomonas sp. 30-3 isolated from oil contaminated soil, Antarctica. Polar Biol 25:5–11

    Article  Google Scholar 

  • Panoff JM, Thammavongs B, Gueguen M, Boutibonnes P (1998) Cold stress responses in mesophilic bacteria. Cryobiology 36:75–83

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Perin C, Guimont C, Bracquart P, Gaillard J-L (1999) Expression of a new cold shock protein of 21.5 kDa and of the major cold shock protein by Streptococcus thermophilus after cold shock. Curr Microbiol 39:342–347

    Article  Google Scholar 

  • Polissi A, De Laurentis W, Zangrossi S, Briani F, Loghi V, Pesole G, Deho G (2003) Changes in Escherichia coli transcriptome during acclimatization at low temperature. Microbiol Res 154:573–580

    Article  CAS  Google Scholar 

  • Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MW, Tiedje JM (2005) Characterization of potential stress response in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53:103–115

    Article  PubMed  CAS  Google Scholar 

  • Prevost D, Drouin P, Antoun H (1999) The potential use of cold adapted rhizobia to improve nitrogen fixation in legumes cultivated in temperate regions. In: Margesin R, Schinner F (eds) Biotechnological application of cold-adapted organisms. Springer, Berlin, pp 161–176

    Chapter  Google Scholar 

  • Prevost D, Drouin P, Laberge S, Bertrand A, Cloutier J, Levesque G (2003) Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can J Bot 81:1153–1161

    Article  CAS  Google Scholar 

  • Puettman M, Ade N, Hof H (1993) Dependence of fatty acid composition of Listeria spp. on growth temperature. Microbiol Res 144:279–283

    Article  Google Scholar 

  • Purusharth RI, Klein F, Sulthana S, Jager S, Jagannadham MV, Hackenberg EE, Ray MK, Klug G (2005) Exoribonuclease R interacts with endoribonuclease E and RNA helicase in the psychrotrophic bacterium Pseudomonas syringae Lz4W. J Biol Chem 280:14572–14578

    Article  PubMed  CAS  Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA 74:2589–2593

    Article  PubMed  CAS  Google Scholar 

  • Russell NJ (1984) Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem Sci 9:108–112

    Article  CAS  Google Scholar 

  • Russell NJ (1990) Cold adaptation of micro-organism. Philos Trans Soc Lond 326:595–611

    Article  CAS  Google Scholar 

  • Russell NJ (1998) Molecular adaptation in psychrophilic bacteria: potential for biotechnological application. Adv Biochem Eng Biotechnol 61:1–2

    PubMed  CAS  Google Scholar 

  • Russell NJ, Evans RI, TerSteeg PF, Hellemons J, Verheul A, Abee T (1995) Membranes as a target for stress adaptation. Int J Food Microbiol 28:255–261

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Valverde RA, Chen TH, Murata N (2000) Transformation of Arabidopsis with the cod A gene for choline oxidase enhances freezing tolerance of plants. Plant J 22:449–453

    Article  PubMed  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  PubMed  CAS  Google Scholar 

  • Sano F, Asakawa N, Inouye Y, Sakurai M (1999) A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39:80–87

    Article  PubMed  CAS  Google Scholar 

  • Sardesai N, Babu CR (2001a) Cold stress induced high molecular weight membrane polypeptides are responsible for cold tolerance in Rhizobium DDSS69. Microbiol Res 156:279–284

    Article  PubMed  CAS  Google Scholar 

  • Sardesai N, Babu CR (2001b) Poly-β-hydroxybutyrate metabolism is affected by changes in respiratory enzymatic activities due to cold stress in two psychrotrophic strains of Rhizobium. Curr Microbiol 42:53–58

    Article  PubMed  CAS  Google Scholar 

  • Schindelin H, Marahiel MA, Heinemann U (1993) Universal nucleic acid-binding domain revealed by crystal structure of the Bacillus subtilis major cold shock proteins. Nature 364:164–168

    Article  PubMed  CAS  Google Scholar 

  • Schnuchel A, Wiltscheck R, Czisch M, Herrier M, Willimsky G, Graumann P, Marahiel MA, Holak TA (1993) Structure in solution of the major cold shock protein from Bacillus subtilis. Nature 364:169–171

    Article  PubMed  CAS  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Gupta AD, Nazim S, Mishra PK, Gupta HS (2008a) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24:955–960

    Article  CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  PubMed  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Mishra PK, Bisht JK, Gupta HS (2009a) Mountain aspect influences the genetic clustering of psychrotolerant phosphate solubilizing Pseudomonads in the Uttarakhand Himalayas. Curr Microbiol 59:432–438

    Article  PubMed  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra PK, Bisht JK, Gupta (2009b) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984) a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239–245

    Article  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra PK, Kundu S, Gupta HS (2009c) Exiguobacterium acetylicum strain 1P (MTCC 8707) a novel bacterial antagonist from the North Western Indian Himalayas. World J Microbiol Biotechnol 25:131–137

    Article  Google Scholar 

  • Sprent JI (1979) The biology of nitrogen-fixing organisms. McGraw-Hill, NewYork, NY

    Google Scholar 

  • Tange AN, Dijck PV, Thevelein JM (2003) Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. Adv Appl Microbiol 53:129–167

    Article  Google Scholar 

  • Theberge MC, Prevost D, Chalifour FP (1996) The effect of different temperatures on the fatty acid composition of Rhizobium leguminosarum bv. viciae in the faba bean symbiosis. New Phytol 134:657–664

    Article  CAS  Google Scholar 

  • Tripathi AK, Klingmuller W (1992) Temperature sensitivity of nitrogen fixation in Azospirillum sp. Can J Microbiol 38:1238–1241

    Article  CAS  Google Scholar 

  • Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at low temperatures. Curr Microbiol 56:140–144

    Article  PubMed  CAS  Google Scholar 

  • Varcamonti M, Arsenijevic S, Martirani L, Fusco D, Naclerio G, Felice MD (2006) Expression of the heat shock gene clpL of Streptococcus thermophilus is induced by both heat and cold shock. Microb Cell Fact 5:6. doi:10.1186/1475-2859-5-6

    Article  PubMed  CAS  Google Scholar 

  • Volkmar KM, Bremer E (1998) Effects of seed inoculation with strain of Pseudomonas fluorescens on root growth and activity of wheat in well-watered and drought stressed grass-fronted rhizotrons. Can J Plant Sci 78:545–551

    Article  Google Scholar 

  • Vyas P, Rahi P, Gulati A (2009) Stress tolerance and genetic variability of phosphate-solubilizing fluorescent Pseudomonas from the cold deserts of the Trans-Himalayas. Microb Ecol 58:425–434

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Knill E, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHAO and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    PubMed  CAS  Google Scholar 

  • Wilkins PO (1973) Psychrotrophic Gram-positive bacteria: temperature effects on growth and solute uptake. Can J Microbiol 19:909–915

    Article  PubMed  CAS  Google Scholar 

  • Witter LD, Campbell MF, Azuma Y (1966) Formation of bacterial pigments at low temperature by psychrophillic pseudomonads. Dev Ind Microbiol 7:231–239

    Google Scholar 

  • Wouters JA, Jeynov B, Rombouts FM, de Vos WM, Kuipers OP, Abee T (1999) Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection. Microbiology 145:3185–3194

    PubMed  CAS  Google Scholar 

  • Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation and characterization of an antifreeze protein with ice-nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44:64–73

    CAS  Google Scholar 

  • Zachariassen KE, Kristiansen E (2000) Ice nucleation and anti-nucleation in nature. Cryobiology 41:257–279

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Prithiviraj B, Charles TC, Driscoll BT, Smith DL (2003) Low temperature tolerant Bradyrhizobium japonicum strains allowing improved nodulation and nitrogen fixation of soybean in a short season (cool spring) area. Eur J Agron 19:205–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindan Selvakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mishra, P.K., Joshi, P., Bisht, S.C., Bisht, J.K., Selvakumar, G. (2010). Cold-Tolerant Agriculturally Important Microorganisms. In: Maheshwari, D. (eds) Plant Growth and Health Promoting Bacteria. Microbiology Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13612-2_12

Download citation

Publish with us

Policies and ethics