Skip to main content

Invasive Species Biology, Ecology, Management and Risk Assessment: Evaluating and Mitigating the Invasion Risk of Biofuel Crops

  • Chapter
  • First Online:
Plant Biotechnology for Sustainable Production of Energy and Co-products

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 66))

Abstract

Biofuel crops are being selected to require minimal inputs, tolerate marginal growing conditions, and exhibit rapid growth rates—agronomically desirable traits that also characterize many of our worst invasive species. Many of the candidate biofuel crops are known invasive or noxious species in portions of their non-native range. Most invasive species were intentionally introduced and cause tremendous environmental and economic harm globally. Necessary elements for the sustainable production of bioenergy include assessment and subsequent mitigation of the invasive potential of biofuel crops prior to large-scale adoption, as the economic benefits of bio-based energy may be offset by environmental damage and management costs. We outline a proposed invasiveness risk evaluation to be conducted on each crop, and subsequent mitigating practices along each step of the biofuel pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailey LH (1916) Standard cyclopedia of horticulture. MacMillan, New York

    Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic, New York, pp 147–168

    Google Scholar 

  • Baker HG (1974) The evolution of weeds. Annu Rev Ecol Syst 5:1–24

    Article  Google Scholar 

  • Barney JN, DiTomaso JM (2008) Nonnative species and bioenergy: are we cultivating the next invader? BioScience 58:64–70

    Article  Google Scholar 

  • Barney JN, DiTomaso JM (2010) Bioclimatic predictions of habitat suitability for the biofuel switchgrass in North America under current and future climate scenarios. Biomass Bioenergy 34:124–133

    Article  Google Scholar 

  • Barney JN, Whitlow TH (2008) A unifying framework for biological invasions: the state factor model. Biol Invasions 10:259–272

    Article  Google Scholar 

  • Barney JN, Mann JJ, Kyser GB, Blumwald E, Van Deynze A, DiTomaso JM (2009) Tolerance of switchgrass to extreme soil moisture stress: ecological implications. Plant Sci 177:724–732

    Article  CAS  Google Scholar 

  • Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420

    Article  Google Scholar 

  • Boe A (2007) Variation between two switchgrass cultivars for components of vegetative and seed biomass. Crop Sci 47:636–642

    Article  Google Scholar 

  • Bradford KJ, Van Deynze AE, Gutterson N, Parrott W, Strauss SH (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nature 23:439–444

    Article  CAS  Google Scholar 

  • Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs RJ, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. BioScience 54:677–688

    Article  Google Scholar 

  • Buddenhagen CE, Chimera C, Clifford P (2009) Assessing biofuel crop invasiveness: a case study. PLoS ONE 4(4): e5261, doi:10.1371/ journal.pone.0005261

    Article  PubMed  Google Scholar 

  • Chapotin SM, Wolt JD (2007) Genetically modified crops for the bioeconomy: meeting public and regulatory expectations. Transgenic Res 16:675–688

    Article  PubMed  CAS  Google Scholar 

  • Cousens R (2008) Risk assessment of potential biofuel species: an application for trait-based models for predicting weediness? Weed Sci 56:873–882

    Article  CAS  Google Scholar 

  • D’Antonio CM, Hobbie SE (2005) Plant species effects on ecosystem processes. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights from ecology, evolution and biogeography. Sinauer, Sunderland, MA, pp 65–84

    Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Article  Google Scholar 

  • DiTomaso JM (2000) Invasive weeds in rangelands: species, impacts, and management. Weed Sci 48:255–265

    Article  CAS  Google Scholar 

  • DiTomaso JM, Healy EA (2007) Weeds of California and other Western states. University of California, Agricultural and Natural Resources, Oakland, CA

    Google Scholar 

  • DiTomaso JM, Barney JN, Fox A (2007) Biofuel feedstocks: the risk of future invasions. Council for Agricultural Science and Technology Commentary QTA 2007–1

    Google Scholar 

  • Energy Independence and Security Act (2007) Public Law 110–140. H.R. 6

    Google Scholar 

  • FAO (2007) Global crop area harvested—all crops. http://faostat.fao.org. Cited Aug 31 2009

  • Field CB, Campbell JE, Lobell DB (2008) Biomass energy: the scale of the potential resource. Trends Ecol Evolut 23:65–72

    Article  Google Scholar 

  • Forseth IN Jr, Innis AF (2004) Kudzu (Pueraria montana): history, physiology, and ecology combine to make a major ecosystem threat. Crit Rev Plant Sci 23:401–413

    Article  Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19:474–499

    Article  Google Scholar 

  • Gordon DR, Onderdonk DA, Fox AM, Stocker RK (2008) Consistent accuracy of the Australian weed risk assessment system across varied geographies. Divers Distrib 14:234–242

    Article  Google Scholar 

  • Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263

    Article  CAS  Google Scholar 

  • Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evolut 19:470–474

    Article  Google Scholar 

  • Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506

    Article  Google Scholar 

  • Holt JS, Boose AB (2000) Potential for spread of Abutilon theophrasti in California. Weed Sci 48:43–52

    Article  CAS  Google Scholar 

  • Kassel PC, Mullen RE, Bailey TB (1985) Seed yield of three switchgrass cultivars for different management practices. Agron J 77:214–218

    Article  Google Scholar 

  • Keller RP, Lodge DM, Finnoff DC (2007) Risk assessment for invasive species produces net bioeconomic benefits. Proc Natl Acad Sci USA 104:203–207

    Article  PubMed  CAS  Google Scholar 

  • Khudamrongsawat J, Tayyar R, Holt JS (2004) Genetic diversity of giant reed (Arundo donax) in the Santa Ana River, California. Weed Sci 52:395–405

    Article  CAS  Google Scholar 

  • Kowarik I (1995) Time lags in biological invasions with regard to the success and failure of alien species. In: Pyšek P, Prach K, Rejmánek M, Wade M (eds) Plant invasions—general aspects and special problems. Academic, Amsterdam, pp 15–38

    Google Scholar 

  • Kriticos D, Yonow T, McFadyen RE (2005) The potential distribution of Chromolaena odorata (Siam weed) in relation to climate. Weed Res 45:246–254

    Article  Google Scholar 

  • Levine JM (2000) Species diversity and biological invasions: relating local process to community pattern. Science 288:852–854

    Article  PubMed  CAS  Google Scholar 

  • Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989

    Article  Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E, Chistou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Article  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib 15:904–910

    Article  Google Scholar 

  • Low T, Booth C (2007) The weedy truth about biofuels. Invasive Species Council, Melbourne

    Google Scholar 

  • Mack RN (2000) Cultivation fosters plant naturalization by reducing environmental stochasticity. Biol Invasions 2:111–122

    Article  Google Scholar 

  • Mack RN (2008) Evaluating the credits and debits of a proposed biofuel species: giant reed (Arundo donax). Weed Sci 56:883–888

    Article  CAS  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Mann JJ, Barney JN, Kyser GB, DiTomaso JM (2009) Pre-commercial screening of the leading biofuel crop Miscanthus x giganteus for invasive plant traits. Calif Weed Sci Soc 61:59

    Google Scholar 

  • Meyerson LA (2008) Biosecurity, biofuels, and biodiversity. Front Ecol Environ 6:291

    Article  Google Scholar 

  • Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24:423–459

    Article  Google Scholar 

  • Pattison RR, Mack RN (2008) Potential distribution of the invasive tree Triadica sebifera (Euphorbiaceae) in the United States: evaluating CLIMEX predictions with field trials. Glob Change Biol 14:813–826

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimatic envelop models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manage 57:239–251

    Article  Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. BioScience 50:53–65

    Article  Google Scholar 

  • Poutsma J, Loomans AJM, Aukema B, Heijerman T (2008) Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model. BioControl 53:103–125

    Article  Google Scholar 

  • Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions. Springer, Berlin, pp 97–125

    Google Scholar 

  • Raghu S, Anderson RC, Daehler CC, Davis AS, Wiedenmann RN, Simberloff D, Mack RN (2006) Adding biofuels to the invasive species fire? Science 313:1742

    Article  PubMed  CAS  Google Scholar 

  • Reichard SH, Hamilton CW (1997) Predicting invasions of woody plants introduced into North America. Conserv Biol 11:193–203

    Article  Google Scholar 

  • Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. BioScience 51:103–113

    Article  Google Scholar 

  • Rejmánek M, Pitcairn MJ (2002) When is eradication of exotic pest plants a realistic goal? In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. IUCN SSC Invasive Species Specialist Group, Cambridge, pp 249–253

    Google Scholar 

  • Richardson DM, Pyšek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Diver Distrib 6:93–107

    Article  Google Scholar 

  • Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM, Parton WJ, Adler PR, Barney JN, Cruse RM, Duke CS, Fearnside PM, Follett RF, Gibbs HK, Goldemberg J, Mladenoff DJ, Ojima D, Palmer MW, Sharpley A, Wallace L, Weathers KC, Wiens JA, Wilhelm WW (2008) Sustainable biofuels redux. Science 322:49–50

    Article  PubMed  CAS  Google Scholar 

  • Royal Society (2008) Sustainable biofuels: prospects and challenges. Royal Society, London, p 90

    Google Scholar 

  • Sala A, Smith SD, Devitt DA (1996) Water use by Tamarix ramosissima and associated phreatophytes in a Mojave desert floodplain. Ecol Appl 63:888–898

    Article  Google Scholar 

  • Sanderson MA, Schnabel RR, Curran WS, Stout WL, Genito D, Tracy BF (2004) Switchgrass and big bluestem hay, biomass, and seed yield response to fire and glyphosate treatment. Agron J 96:1688–1692

    Article  Google Scholar 

  • Savidge JA (1987) Extinction of an island forest avifauna by an introduced snake. Ecology 68:660–668

    Article  Google Scholar 

  • Sax DF, Stachowicz JJ, Gaines SD (eds) (2005) Species invasions: insights into ecology, evolution, and biogeography. Sinauer, Sunderland, MA

    Google Scholar 

  • Schnoor JL, Doering OC, Entekhabi D, Hiler EA, Hullar TL, Tilman D (2008) Water implications of biofuels production in the United States. National Academies Press, Washington, DC

    Google Scholar 

  • Simberloff D (2005) The politics of assessing risk for biological invasions: the USA as a case study. Trends Ecol Evolut 20:216–222

    Article  Google Scholar 

  • Simberloff D (2008) Invasion biologists and the biofuels boom: Cassandras or colleagues? Weed Sci 56:867–872

    Article  CAS  Google Scholar 

  • Sinden J, Jones R, Hester S, Odom D, Kalisch C, James R, Cacho O (2004) The economic impact of weeds in Australia, CRC for Australian Weed Management Technical Series, p 55

    Google Scholar 

  • Stachowicz JJ, Tilman D (2005) Species invasions and the relationships between species diversity, community saturation, and ecosystem functioning. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution, and biogeography. Sinauer, Sunderland, MA, pp 41–64

    Google Scholar 

  • Sutherland S (2004) What makes a weed a weed: life history traits of native and exotic plants in the USA. Oecologia 141:24–39

    Article  PubMed  Google Scholar 

  • Sutherst RW (2003) Prediction of species geographical ranges. J Biogeogr 30:805–816

    Article  Google Scholar 

  • Sutherst RW, Maywald GF, Yonow T, Stevens PM (1999). CLIMEX: predicting the effects of climate on plants and animals. CSIRO, Victoria

    Google Scholar 

  • Sutherst RW, Maywald GF, Russell BL (2000) Estimating vulnerability under global change: modular modelling of pests. Agric Ecosyst Environ 82:303–319

    Article  Google Scholar 

  • Sutherst RW, Maywald GF, Bourne AS (2007) Including species interactions in risk assessments for global change. Glob Change Biol 13:1843–1859

    Article  Google Scholar 

  • Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273

    Article  PubMed  Google Scholar 

  • Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson P (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804

    Article  PubMed  CAS  Google Scholar 

  • Weber J, Panetta FD, Virtue JG, Pheloung PC (2009) An analysis of assessment outcomes from eight years’ operation of the Australian border weed risk assessment system. J Environ Manage 90:798–807

    Article  PubMed  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429

    Article  PubMed  CAS  Google Scholar 

  • Zamora DL, Thill DC, Eplee RE (1989) An eradication plan for plant invasions. Weed Technol 3:2–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob N. Barney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barney, J.N., DiTomaso, J.M. (2010). Invasive Species Biology, Ecology, Management and Risk Assessment: Evaluating and Mitigating the Invasion Risk of Biofuel Crops. In: Mascia, P., Scheffran, J., Widholm, J. (eds) Plant Biotechnology for Sustainable Production of Energy and Co-products. Biotechnology in Agriculture and Forestry, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13440-1_9

Download citation

Publish with us

Policies and ethics