Skip to main content

Impacts of Elevated CO2 on the Growth and Physiology of Plants with Crassulacean Acid Metabolism

  • Chapter
  • First Online:

Part of the book series: Progress in Botany ((BOTANY,volume 72))

Abstract

The photosynthetic specialization of crassulacean acid metabolism (CAM) employs both Rubisco and phosphoenolpyruvate carboxylase (PEPC) for uptake of CO2 over the day and night. Temporal separation of the C3 and C4 carboxylases optimizes photosynthetic performance and carbon gain under water-limited environments. The water-conserving attributes of CAM has highlighted the potential of plants with this photosynthetic pathway as a means of carbon sequestration and biomass production on marginal lands. Sustainable agronomic and horticultural production of CAM species requires an understanding of how exposure to elevated atmospheric concentrations of CO2 will affect growth and productivity. In this review, the physiological responses of CAM plants to [CO2] elevation will be assessed in terms of net carbon gain, growth, anatomy, morphology, and water use efficiency. Photosynthetic responses to elevated [CO2] will be specifically discussed on a background of carbohydrate metabolism and partitioning toward the potentially competing sinks of nocturnal acid synthesis, respiration, and export for growth in CAM species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371

    PubMed  Google Scholar 

  • Antony E, Borland AM (2008) The role and regulation of sugar transporters in plants with crassulacean acid metabolism. Prog Bot 70:127–143

    Google Scholar 

  • Antony E, Taybi T, Courbot M, Mugford S, Smith JAC, Borland AM (2008) Cloning, localisation and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus (pineapple). J Exp Bot 59:1895–1908

    PubMed  CAS  Google Scholar 

  • Bazzaz FA, Catovsky S (2002) Impact of global environmental change on plants: from cells to ecosystems. In: Mooney HA, Canadell JG (eds) Encyclopedia of global environmental change, vol 2. Wiley, Chichester, pp 94–111

    Google Scholar 

  • Black CC (1973) Photosynthetic carbon fixation in relation to net CO2 uptake. Annu Rev Plant Physiol 24:253–286

    CAS  Google Scholar 

  • Black CC, Chen JQ, Doong RL, Angelov MN, Sung SJS (1996) Alternative carbohydrate reserves used in the daily cycle of crassulacean acid metabolism. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism: biochemistry. Ecophysiology and evolution. Springer-Verlag, Berlin, pp 31–43

    Google Scholar 

  • Borland AM (1996) A model for the partitioning of photosynthetically fixed carbon during the C3–CAM transition in Sedum telephium. New Phytol 134:433–444

    CAS  Google Scholar 

  • Borland AM, Griffiths H (1996) Variations in the phases of CAM and regulation of carboxylation patterns determined by carbon isotope discrimination techniques. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism: biochemistry. Ecophysiology and evolution. Springer-Verlag, Berlin, pp 230–246

    Google Scholar 

  • Borland AM, Dodd AN (2002) Carbohydrate partitioning in CAM plants: reconciling potential conflicts of interest. Funct Plant Biol 29:707–716

    CAS  Google Scholar 

  • Borland AM, Taybi T (2004) Synchronization of metabolic processes in plants with crassulacean acid metabolism. J Exp Bot 55:1255–1265

    PubMed  CAS  Google Scholar 

  • Borland AM, Griffiths H, Broadmeadow MSJ, Fordham MC, Maxwell C (1994) Carbon-isotope composition of biochemical fractions and the regulation of carbon balance in leaves of the C3-crassulacean acid metabolism plant Clusia minor L. growing in Trinidad. Plant Physiol 106:493–501

    PubMed  CAS  Google Scholar 

  • Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896

    PubMed  CAS  Google Scholar 

  • Borland AM, Hartwell J, Jenkins GI, Wilkins MB, Nimmo HG (1999) Metabolite control overrides circadian regulation of PEPc kinase and CO2 fixation in crassulacean acid metabolism (CAM). Plant Physiol 121:889–896

    PubMed  CAS  Google Scholar 

  • Borland AM, Maxwell K, Griffiths H (2000) Ecophysiology of plants with crassuacean acid metabolism. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: physiology and metabolism. Kluwer Academic Publishers, Dordrecht, pp 583–605

    Google Scholar 

  • Bowes G (1993) Facing the inevitable plant and increasing atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol 44:309–332

    CAS  Google Scholar 

  • Ceusters J, Borland AM, Londers E, Verdoodt V, Godts C, De Proft MP (2008a) Diel shifts in carboxylation pathway and metabolite dynamics in the CAM bromeliad Aechmea ‘Maya’ in response to elevated CO2. Ann Bot 102:389–397

    PubMed  CAS  Google Scholar 

  • Ceusters J, Londers E, Verdoodt V, Ceusters N, De Proft MP (2008b) Seasonal impact on physiological leaf damage risk of Aechmea hybrid under greenhouse conditions. Sci Hortic 118:242–245

    Google Scholar 

  • Ceusters J, Borland AM, De Proft MP (2009a) Drought adaptation in plants with crassulacean acid metabolism involves the flexible use of different storage carbohydrate pools. Plant Signal Behav 4:212–214

    PubMed  CAS  Google Scholar 

  • Ceusters J, Borland AM, Londers E, Verdoodt V, Godts C, De Proft MP (2009b) Differential usage of storage carbohydrates in the CAM bromeliad Aechmea ‘Maya’ during acclimation to drought and recovery from dehydration. Physiol Plant 135:174–184

    PubMed  CAS  Google Scholar 

  • Ceusters J, Londers E, Verdoodt V, Ceusters N, Godts C, De Proft MP (2009c) Impact of developmental stage on CAM expression and growth in an Aechmea hybrid under greenhouse conditions. J Hortic Sci Biotechnol 84:399–402

    CAS  Google Scholar 

  • Cote FX, Folliot M, Andre M (1993) Photosynthetic crassulacean acid metabolism in pineapple: diel rhythm of CO2 fixation, water use, and effect of water stress. Acta Hortic 344:113–129

    Google Scholar 

  • Cousins AB, Badger MR, von Caemmerer (2006) Carbonic anhydrase and its influence on carbon isotope discrimination during C4 photosynthesis. Insights from anti-sense RNA in Flaveria bidentis. Plant Physiol 141:232–242

    PubMed  CAS  Google Scholar 

  • Christopher JT, Holtum JAM (1996) Patterns of carbon partitioning in leaves of crassulacean acid metabolism species during deacidification. Plant Physiol 112:393–399

    PubMed  CAS  Google Scholar 

  • Christopher JT, Holtum JAM (1998) Carbohydrate partitioning in the leaves of Bromeliaceae performing C3 photosynthesis or crassulacean acid metabolism. Aust J Plant Physiol 25:371–376

    CAS  Google Scholar 

  • Croonenborghs S, Ceusters J, Londers E, De Proft MP (2009) Effects of elevated CO2 on growth and morphological characteristics of ornamental bromeliads. Sci Hortic 121:192–198

    CAS  Google Scholar 

  • Crowley TJ, Berner RA (2001) CO2 and climate change. Science 292:870–872

    PubMed  CAS  Google Scholar 

  • Cui M, Nobel PS (1994) Gas exchange and growth responses to elevated CO2 and light levels in the CAM species Opuntia ficus-indica. Plant Cell Environ 17:935–944

    CAS  Google Scholar 

  • Cui M, Miller PM, Nobel PS (1993) CO2 exchange and growth of the crassulacean acid metabolism plant Opuntia ficus-indica under elevated CO2 in open-top chambers. Plant Physiol 103:519–524

    PubMed  CAS  Google Scholar 

  • Cushman JC, Agarie S, Albion S, Elliot SM, Taybi T, Borland AM (2008) Isolation and characterization of mutants of ice plant, Mesembryanthemum crystallinum, defective in crassulacean acid metabolism. Plant Physiol 147:228–238

    PubMed  CAS  Google Scholar 

  • Cushman JC, Borland AM (2002) Induction of crassulacean acid metabolism by water limitation. Plant Cell Environ 25:295–310

    PubMed  CAS  Google Scholar 

  • Dodd AN, Borland AM, Haslam RP, Griffiths H, Maxwell K (2002) Crassulacean acid metabolism: plastic fantastic. J Exp Bot 53:569–580

    PubMed  CAS  Google Scholar 

  • Dodd AN, Griffiths H, Taybi T, Cushman JC, Borland AM (2003) Integrating diel starch metabolism with the circadian and environmental regulation of crassulacean acid metabolism in Mesembryanthemum crystallinum. Planta 216:789–797

    PubMed  CAS  Google Scholar 

  • Drennan PM, Nobel PS (2000) Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ 23:767–781

    CAS  Google Scholar 

  • Eller BM, Ferrari S (1997) Water use efficiency of two succulents with contrasting CO2 fixation pathways. Plant Cell Environ 20:93–100

    CAS  Google Scholar 

  • Farrar JF (1990) Starch turnover: its role in source-sink relations and a comparison to sucrose. In: Bonnemain JL, Delrot S, Lucas WT, Dainty J (eds) Recent advances in phloem transport and assimilate compartmentation. Quest Edition, Nantes, pp 213–223

    Google Scholar 

  • Ghannoum O (2009) C4 photosynthesis and water stress. Ann Bot 103:635–644

    PubMed  CAS  Google Scholar 

  • Ghannoum O, von Caemmerer S, Ziska LH, Conroy JP (2000) The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant Cell Environ 23:931–942

    CAS  Google Scholar 

  • Gillon JS, Yakir D (2000) Naturally low carbonic anhydrase activity in C4 and C3 plants limits discrimination against (COO)-O_18 during photosynthesis. Plant Cell Environ 20:1217–1230

    Google Scholar 

  • Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol 99:1443–1448

    PubMed  CAS  Google Scholar 

  • Gouk SS, Yong JWH, Hew CS (1997) Effects of superelevated CO2 on the growth and carboxylating enzymes in an epiphytic CAM orchid plantlet. J Plant Physiol 151:129–136

    CAS  Google Scholar 

  • Graham EA, Nobel PS (1996) Long-term effects of a doubled atmospheric CO2 concentration on the CAM species Agave deserti. J Exp Bot 47:61–69

    CAS  Google Scholar 

  • Granados J, Körner C (2002) In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Glob Change Biol 8:1109–1117

    Google Scholar 

  • Griffihs H (1988) Crassulacean acid metabolism: a re-appraisal of physiological plasticity in form and function. Adv Bot Res 15:43–92

    Google Scholar 

  • Griffiths H, Broadmeadow MSJ, Borland AM, Hetherington CS (1990) Short-term changes in carbon isotope discrimination identify transitions between C3 and C4 carboxylation during crassulacean acid metabolism. Planta 181:604–610

    CAS  Google Scholar 

  • Griffiths H, Borland AM, Gillon JS, Harwood KG, Maxwell K, Wilson JM (1999) Stable isotopes reveal exchanges between soil, plants and the atmosphere. In: Press MC, Scholes JD, Barker MG (eds) Advances in physiological plant ecology. Blackwell Science, Oxford, pp 415–441

    Google Scholar 

  • Griffiths H, Cousins AB, Badger MR, von Caemmerer S (2007) Discrimination in the dark. Resolving the interplay between metabolic and physical constraints to phosphoenolpyruvate carboxylase activity during the crassulacean acid metabolism cycle. Plant Physiol 143:1055–1067

    PubMed  CAS  Google Scholar 

  • Hatch MD, Burnell JN (1990) Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis. Plant Physiol 93:825–828

    PubMed  CAS  Google Scholar 

  • Häusler RE, Baur B, Scharte J, Teichmann T, Eicks M, Fischer KL, Flügge U-I, Schubert S, Weber A, Fischer K (2000) Plastidic metabolite transporters and their physiological functions in the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum. Plant J 24:285–296

    PubMed  Google Scholar 

  • Holtum JAM, O’Leary MH, Osmond CB (1983) Effect of varying CO2 partial pressure on photosynthesis and on carbon isotope composition of carbon-4 of malate from the crassulacean acid metabolism plant Kalanchoë daigremontiana Hamet et Perr. Plant Physiol 71:602–609

    PubMed  CAS  Google Scholar 

  • Huerta AJ, Ting IP (1988) Effects of various levels of CO2 on the induction of crassulacean acid metabolism in Portulacaria afra (L.) Jacq. Plant Physiol 88:183–188

    PubMed  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel for Climate Change) (2007) Climate change. The second assessment report of IPCC working group I. Cambridge University Press, Cambridge

    Google Scholar 

  • Isdo SB, Kimball BA, Anderson MG, Szarek SR (1986) Growth response of a succulent plant, Agave vilmoriniana to elevated CO2. Plant Physiol 80:796–797

    Google Scholar 

  • Isdo SB, Kimball BA (1992) Above-ground inventory of sour orange trees exposed to different atmospheric CO2 concentrations for three full years. Agr Forest Meteorol 60:145–151

    Google Scholar 

  • Jarvis AJ, Mansfield TA, Davies WJ (1999) Stomatal behaviour, photosynthesis and transpiration under rising CO2. Plant Cell Environ 22:639–648

    CAS  Google Scholar 

  • Körner C (2001) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–1619

    Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    PubMed  Google Scholar 

  • Körner C, Morgan JA, Norby RJ (2007) CO2 fertilization: when, where, how much? In: Canadell JP, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world, The IGBP series. Springer, Berlin, pp 9–21

    Google Scholar 

  • Leakey ADB, Bernacchi CJ, Dohleman FG, Ort DR, Long SP (2004) Will photosynthesis of maize (Zea mays) in the US Corn Belt increase in future [CO2] rich atmospheres? An analysis of diurnal courses of CO2 uptake under free-air concentration enrichment (FACE). Glob Change Biol 10:951–962

    Google Scholar 

  • Li CR, Gan LJ, Xia K, Zhou X, Hew CS (2002) Responses of carboxylating enzymes, sucrose metabolising enzymes and plant hormones in a tropical epiphytic CAM orchid to CO2 enrichment. Plant Cell Environ 25:369–377

    CAS  Google Scholar 

  • Lüttge U (1988) Day–night changes of citric-acid levels in crassulacean acid metabolism: phenomenon and ecophysiological significance. Plant Cell Environ 11:445–451

    Google Scholar 

  • Lüttge U (1996) Clusia: plasticity and diversity in a genus of C3/CAM intermediate tropical trees. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism: biochemistry. Ecophysiology and evolution. Springer-Verlag, Berlin, pp 296–311

    Google Scholar 

  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652

    PubMed  Google Scholar 

  • Lüttge U (2006) Photosynthetic flexibility and ecological plasticity: questions and lessons from Clusia, the only CAM tree, in the neotropics. New Phytol 171:7–25

    PubMed  Google Scholar 

  • Maxwell K, von Caemmerer S, Evans JR (1997) Is a low internal conductance to CO2 diffusion a consequence of succulence in plants with crassulacean acid metabolism? Austr J Plant Physiol 24:777–786

    CAS  Google Scholar 

  • Maxwell K, Badger MR, Osmond CB (1998) A comparison of CO2 and O2 exchange patterns and the relationship with chlorophyll fluorescence during photosynthesis in C3 and CAM plants. Austr J Plant Physiol 25:45–52

    Google Scholar 

  • Maxwell K, Borland AM, Haslam RP, Helliker BR, Roberts A, Griffiths H (1999) Modulation of Rubisco activity during the diurnal Phases of the crassulacean acid metabolism plant Kalanchoë daigremontiana. Plant Physiol 121:849–856

    PubMed  CAS  Google Scholar 

  • Milburn TR, Pearson DJ, Ndegwe NA (1968) Crassulacean acid metabolism under natural tropical conditions. New Phytol 67:883–897

    CAS  Google Scholar 

  • Moore BD, Cheng SH, Sims D, Seemann JR (1999) The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ 22:567–582

    CAS  Google Scholar 

  • Mortensen LM, Moe R (1992) Effects of CO2 enrichment and different day/night temperature combinations on growth and flowering of Rosa L. & Kalanchoë blossfeldiana v. Poelln. Sci Hortic 51:145–153

    CAS  Google Scholar 

  • Nelson EA, Sage RF (2008) Functional constraints of CAM leaf anatomy: tight cell packing is associated with increased CAM function across a gradient of CAM expression. J Exp Bot 59:1841–1850

    PubMed  CAS  Google Scholar 

  • Nobel PS (1988) Environmental biology of agaves and cacti. Cambridge University Press, Cambridge

    Google Scholar 

  • Nobel PS (1991) Achievable productivities of CAM plants: basis for high values compared with C3 and C4 plants. New Phytol 119:183–205

    CAS  Google Scholar 

  • Nobel PS (1996) High productivity of certain agronomic CAM species. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism: biochemistry. Ecophysiology and evolution. Springer-Verlag, Berlin, pp 255–265

    Google Scholar 

  • Nobel PS (2000) Crop ecosystem responses of climatic change. Crassulacean acid metabolism crops. In: Reddy KR, Hodges HF (eds) Climate change and global crop productivity. CAB international, Oxford, pp 315–331

    Google Scholar 

  • Nobel PS, Hartsock TL (1986) Short-term and long-term responses of crassulacean acid metabolism plants to elevated CO2. Plant Physiol 82:604–606

    PubMed  CAS  Google Scholar 

  • Nobel PS, Israel AA (1994) Cladode development, environmental responses of CO2 uptake, and productivity for Opuntia ficus-indica under elevated CO2. J Exp Bot 45:295–303

    Google Scholar 

  • Nobel PS, Cui M, Israel AA (1994) Light, chlorophyll, carboxylase activity and CO2 fixation at various depths in the chlorenchyma of Opuntia ficus-indica (L.) Miller under current and elevated CO2. New Phytol 128:315–322

    CAS  Google Scholar 

  • North GB, Moore TL, Nobel PS (1995) Cladode development for Opuntia ficus-indica (Cactaceae) under current and doubled CO2 concentrations. Am J Bot 82:159–166

    Google Scholar 

  • Nowak EJ, Martin CE (1995) Effect of elevated CO2 on nocturnal malate accumulation in the CAM species Tillandsia ionantha and Crassula arborescens. Photosynthetica 31:441–444

    CAS  Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29:379–414

    CAS  Google Scholar 

  • Osmond CB, Björkman O (1975) Pathways of CO2 fixation in the CAM plant Kalanchoë daigremontiana II. Effects of O2 and CO2 concentration on light and dark CO2 fixation. Aust J Plant Physiol 2:155–162

    CAS  Google Scholar 

  • Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309:600–603

    PubMed  CAS  Google Scholar 

  • Poorter H, Navas ML (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198

    Google Scholar 

  • Popp M, Kramer D, Lee H, Diaz M, Ziegler H, Lüttge U (1987) Crassulacean acid metabolism in tropical dycotyledonous trees of the genus Clusia. Trees 1:138–247

    Google Scholar 

  • Powles SB, Chapman KSR, Osmond CB (1980) Photoinhibition of intact attached leaves of C4 plants: dependence on CO2 and O2 partial pressures. Aust J Plant Physiol 7:737–747

    CAS  Google Scholar 

  • Pritchard SG, Rogers HH, Prior SA, Peterson CM (1999) Elevated CO2 and plant structure: a review. Glob Change Biol 5:807–837

    Google Scholar 

  • Raveh E, Gersani M, Nobel PS (1995) CO2 uptake and fluorescence for a shade-tolerant cactus Hylocereus undatus under current and doubled CO2 concentrations. Physiol Plant 93:505–511

    CAS  Google Scholar 

  • Sage RF (2001) Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biol 3:202–212

    CAS  Google Scholar 

  • Szarek SR, Holthe PA, Ting IP (1987) Minor physiological response to elevated CO2 by the CAM plant Agave vilmoriniana. Plant Physiol 83:938–940

    PubMed  CAS  Google Scholar 

  • Ting IP (1994) CO2 and Crassulacean acid metabolism plants: a review. In: Tolbert NE, Preiss J (eds) Regulation of atmospheric CO2 and O2 by photosynthetic carbon metabolism. Oxford University Press, New York, pp 176–183

    Google Scholar 

  • Ting IP, Lord EM, da SL SL, DeNiro MJ (1985) Crassulacean acid metabolism in the strangler Clusia rosea Jacq. Science 229:969–971

    PubMed  CAS  Google Scholar 

  • Von Caemmerer S, Griffiths H (2009) Stomatal responses to CO2 during a diel CAM cycle in Kalanchoë daigremontiana and Kalanchoë pinnata. Plant Cell Environ 32:567–576

    Google Scholar 

  • von Caemmerer S, Furbank RT (2003) The C-4 pathway: an efficient CO2 pump. Photosynth Res 77:191–207

    Google Scholar 

  • Wang N, Nobel PS (1996) Doubling the CO2 concentration enhanced the activity of carbohydrate-metabolism enzymes, source carbohydrate production, photoassimilate transport and sink strength for Opuntia ficus-indica. Plant Physiol 110:893–902

    PubMed  CAS  Google Scholar 

  • Ward JK, Tissue DT, Thomas RB, Strain BR (1999) Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Glob Change Biol 5:857–867

    Google Scholar 

  • Winter K, Engelbrecht B (1994) Short-term CO2 responses of light and dark CO2 fixation in the crassulacean acid metabolism plant Kalanchoë pinnata. J Plant Physiol 144:462–467

    CAS  Google Scholar 

  • Winter K, Smith JAC (1996) Crassulacean acid metabolism: current status and perspectives. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism: biochemistry. Ecophysiology and evolution. Springer-Verlag, Berlin, pp 230–246

    Google Scholar 

  • Winter K, Zotz G, Baur B, Dietz KJ (1992) Light and dark CO2 fixation in Clusia uvitana and the effects of plant water status and CO2 availability. Oecologia 91:47–51

    Google Scholar 

  • Winter K, Richter A, Engelbrecht B, Posada J, Virgo A, Popp M (1997) Effect of elevated CO2 on growth and crassulacean acid metabolism activity of Kalanchoë pinnata under tropical conditions. Planta 201:389–396

    CAS  Google Scholar 

  • Würth MKR, Winter K, Körner C (1998) In situ responses to elevated CO2 in tropical forest understory plants. Funct Ecol 12:886–895

    Google Scholar 

  • Zhu J, Bartholomew DP, Goldstein G (1997) Effect of elevated carbon dioxide on the growth and physiological responses of pineapple, a species with crassulacean acid metabolism. J Am Soc Hortic Sci 122:233–237

    CAS  Google Scholar 

  • Zhu J, Goldstein G, Bartholomew DP (1999) Gas exchange and carbon isotope composition of Ananas comosus in response to elevated CO2 and temperature. Plant Cell Environ 22:999–1007

    Google Scholar 

  • Ziska LH, Hogan KP, Smith AP, Drake BG (1991) Growth and photosynthetic response of nine tropical species with long-term exposure to doubled carbon dioxide. Oecologia 86:383–389

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Borland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ceusters, J., Borland, A.M. (2010). Impacts of Elevated CO2 on the Growth and Physiology of Plants with Crassulacean Acid Metabolism. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany 72. Progress in Botany, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13145-5_6

Download citation

Publish with us

Policies and ethics