Skip to main content

Fast Protein Structure Alignment

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6053))

Included in the following conference series:

Abstract

We address the problem of aligning the 3D structures of two proteins. Our pairwise comparisons are based on a new optimization model that is succinctly expressed in terms of linear transformations and highlights the problem’s intrinsic geometry. The optimization problem is approximately solved with a new polynomial time algorithm. The worst-case analysis of the algorithm shows that the solution is bounded by a constant depending on the data of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Mustafa, N.H., Wang, Y.: Fast molecular shape matching using contact maps. J. Comput. Biol. 14(2), 131–143 (2007)

    Article  MathSciNet  Google Scholar 

  2. Andonov, R., Yanev, N., Malod-Dognin, N.: An efficient lagrangian relaxation for the contact map overlap problem. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 162–173. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Andreeva, A., Howorth, D., Chandonia, J.-M., Brenner, S.E., Hubbard, T.P., Chothia, C., Murzin, A.G.: Data growth and its impact on the scop database: new developments. Nucleic Acids Res. 36(Database issue), D419–D425 (2008)

    Google Scholar 

  4. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  Google Scholar 

  5. Cao, Y.: Hungarian algorithm for linear assignment problems, v2.1 (2008), http://www.mathworks.com/matlabcentral/fileexchange/20652

  6. Caprara, A., Carr, R., Istrail, S., Lancia, G., Walenz, B.: 1001 optimal pdb structure alignments: integer programming methods for finding the maximum contact map overlap. J. Comput. Biol. 11(1), 27–52 (2004)

    Article  Google Scholar 

  7. Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., de Hoon, M.J.L.: Biopython: freely available python tools for computational molecular biology and bioinformatics. Bioinformatics 25(11), 1422–1423 (2009)

    Article  Google Scholar 

  8. Forrester, R.J., Greenberg, H.J.: Quadratic binary programming models in computational biology. Algorithmic Operations Research 3, 110–129 (2008)

    MathSciNet  Google Scholar 

  9. Galaktionov, S.G., Marshall, G.R.: Prediction of protein structure in terms of intraglobular contacts: 1d to 2d to 3d. In: Fourth International Conference on Computational Biology, Intelligent Systems for Molecular Biology 1996, St. Louis, Missouri, U.S.A., June 12–15 (1996)

    Google Scholar 

  10. Godzik, A.: The structural alignment between two proteins: is there a unique answer? Protein Sci. 5(7), 1325–1338 (1996)

    Article  Google Scholar 

  11. Goldman, D., Istrail, S., Papadimitriou, C.H.: Algorithmic aspects of protein structure similarity. In: 40th Annual Symposium on Foundations of Computer Science, pp. 512–521 (1999)

    Google Scholar 

  12. Havel, T.F., Kuntz, I.D., Crippen, G.M.: The combinatorial distance geometry method for the calculation of molecular conformation. i. a new approach to an old problem. J. Theor. Biol. 104(3), 359–381 (1983)

    Article  Google Scholar 

  13. Jones, N.C., Pevzner, P.A.: An Introduction to Bioinformatics Algorithms. MIT Press, Cambridge (2004)

    Google Scholar 

  14. Kabsch, W.: A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallog. A 34, 827–828 (1978)

    Article  Google Scholar 

  15. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  Google Scholar 

  16. Kearsley, S.K.: On the orthogonal transformation used for structural comparisons. Acta Crystallogr. A 45, 208–210 (1989)

    Article  Google Scholar 

  17. Kolodny, R., Koehl, P., Levitt, M.: Comprehensive evaluation of protein structure alignment methods: scoring by geometric measures. J. Mol. Biol. 346(4), 1173–1188 (2005)

    Article  Google Scholar 

  18. Kolodny, R., Linial, N.: Approximate protein structural alignment in polynomial time. Proc. Natl. Acad. Sci. USA 101(33), 12201–12206 (2004)

    Article  Google Scholar 

  19. Lancia, G., Carr, R., Walenz, B., Istrail, S.: 101 optimal pdb structure alignments: A branch-and-cut algorithm for the maximum contact map overlap problem. In: Proceedings of the Fifth Annual International Conference on Computational Biology, pp. 143–202. ACM Press, New York (2001)

    Google Scholar 

  20. Menke, M., Berger, B., Cowen, L.: Matt: local flexibility aids protein multiple structure alignment. PLoS Comput. Biol. 4(1), e10 (2008)

    Article  MathSciNet  Google Scholar 

  21. Oakley, M.T., Barthel, D., Bykov, Y., Garibaldi, J.M., Burke, E.K., Krasnogor, N., Hirst, J.D.: Search strategies in structural bioinformatics. Curr. Protein Pept. Sci. 9(3), 260–274 (2008)

    Article  Google Scholar 

  22. Strickland, D.M., Barnes, E., Sokol, J.S.: Optimal protein structure alignment using maximum cliques. Oper. Res. 53(3), 389–402 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Subbiah, S., Laurents, D.V., Levitt, M.: Structural similarity of dna-binding domains of bacteriophage repressors and the globin core. Curr. Biol. 3(3), 141–148 (1993)

    Article  Google Scholar 

  24. Wang, Y., Makedon, F., Ford, J., Huang, H.: A bipartite graph matching framework for finding correspondences between structural elements in two proteins. In: Engineering in Medicine and Biology Society, IEMBS 2004. 26th Annual International Conference of the IEEE, September 2004, vol. 2, pp. 2972–2975 (2004)

    Google Scholar 

  25. Xie, W., Sahinidis, N.V.: A reduction-based exact algorithm for the contact map overlap problem. J. Comput. Biol. 14(5), 637–654 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shibberu, Y., Holder, A., Lutz, K. (2010). Fast Protein Structure Alignment. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M., Rajasekaran, S. (eds) Bioinformatics Research and Applications. ISBRA 2010. Lecture Notes in Computer Science(), vol 6053. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13078-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13078-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13077-9

  • Online ISBN: 978-3-642-13078-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics