Intelligent Data Analysis of Intelligent Systems

  • David C. Krakauer
  • Jessica C. Flack
  • Simon Dedeo
  • Doyne Farmer
  • Daniel Rockmore
Conference paper

DOI: 10.1007/978-3-642-13062-5_3

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6065)
Cite this paper as:
Krakauer D.C., Flack J.C., Dedeo S., Farmer D., Rockmore D. (2010) Intelligent Data Analysis of Intelligent Systems. In: Cohen P.R., Adams N.M., Berthold M.R. (eds) Advances in Intelligent Data Analysis IX. IDA 2010. Lecture Notes in Computer Science, vol 6065. Springer, Berlin, Heidelberg

Abstract

We consider the value of structured priors in the analysis of data sampled from complex adaptive systems. We propose that adaptive dynamics entails basic constraints (memory, information processing) and features (optimization and evolutionary history) that serve to significantly narrow search spaces and candidate parameter values. We suggest that the property of “adaptive self-awareness”, when applicable, further constrains model selection, such that predictive statistical models converge on a systems own internal representation of regularities. Principled model building should therefore begin by identifying a hierarchy of increasingly constrained models based on the adaptive properties of the study system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David C. Krakauer
    • 1
  • Jessica C. Flack
    • 1
  • Simon Dedeo
    • 1
  • Doyne Farmer
    • 1
  • Daniel Rockmore
    • 1
  1. 1.Santa Fe InstituteSanta Fe, New MexicoUSA

Personalised recommendations