Skip to main content

Classification of the Spheroidal Normal Modes

  • Chapter
  • First Online:
Linear Isentropic Oscillations of Stars

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 371))

  • 669 Accesses

Abstract

Many spheroidal normal modes of stars are standing waves resulting from interferences of running waves that travel in opposite directions. Radial modes originate from interferences of acoustic waves that are associated with the degree equal to zero and travel to-and-fro in the A-cavity with a frequency fitting to the dimensions of the cavity. One gets an idea of the spectrum of the fitting frequencies by treating the eigenvalue problem of the radial oscillations as a Sturm–Liouville eigenvalue problem with singular end points. Moreover, the interferences of acoustic waves and internal gravity waves that are associated with a degree different from zero and travel to-and-fro in the A-or G-cavity lead, for certain frequencies, to standing waves resulting in non-radial modes. Insight into the types of spectra of eigenfrequencies has been provided by an approach of Cowling. Modes arising from interferences of acoustic waves are called p-modes, and those arising from interferences of internal gravity waves, g +-modes. In stars that contain a convectively unstable region, g -modes appear, which render the global reactions of the star to the local convective instabilities. Besides the p-, g +-, and g -modes, non-radial f-modes exist, whose origin is related to surface waves, at least for higher degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M. Abramowitz, I.A. Stegun (1965) Handbook of Mathematical Functions – with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York

    Google Scholar 

  • M.L. Aizenman, P. Smeyers (1977) An analysis of the linear, adiabatic oscillations of a star in terms of potential fields. Astrophys. Space Sci. 48, 123–136

    Article  ADS  MATH  Google Scholar 

  • H.R. Beyer (1994) On some vector analogues of Sturm-Liouville operators. MPA preprint

    Google Scholar 

  • H.R. Beyer, B.G. Schmidt (1995) Newtonian stellar oscillations. Astron. Astrophys. 296, 722–726

    ADS  Google Scholar 

  • S. Chandrasekhar, N.R. Lebovitz (1962b) On the oscillations and the stability of rotating gaseous masses. II. The homogeneous, compressible model. Astrophys. J. 136, 1069–1081

    Google Scholar 

  • S. Chandrasekhar, N.R. Lebovitz (1963) The equilibrium and the stability of the Jeans spheroids. Astrophys. J. 137, 1172–1184

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • J. Christensen-Dalsgaard, D.J. Mullan (1994) Accurate frequencies of polytropic models. Mon. Not. R. Astron. Soc. 270, 921–935

    ADS  Google Scholar 

  • T.G. Cowling (1941) The non-radial oscillations of polytropic stars. Mon. Not. R. Astron. Soc. 101, 367–375

    MathSciNet  ADS  Google Scholar 

  • F.-L. Deubner, D. Gough (1984) Helioseismology: oscillations as a diagnostic of the solar interior. Annu. Rev. Astron. Astrophys. 22, 593–619

    Article  ADS  Google Scholar 

  • K.O. Friedrichs (1948) Studies and Essays presented to R. Courant on his 60th Birthday, Jan. 8, 1948, ed. by K.O. Friedrichs, O.E. Neugebauer, J.J. Stoker. Criteria for the discrete character of the spectra of ordinary differential equations. Interscience, New York, pp. 145–160

    Google Scholar 

  • E.L. Ince (1956) Ordinary Differential Equations. Dover Publications, New York

    Google Scholar 

  • E.C. Kemble (1937) The Fundamental Principles of Quantum Mechanics. McGraw Hill, New York

    Google Scholar 

  • P. Ledoux (1940) Sur la théorie des oscillations radiales d’une étoile. Astrophys. Norvegica 3, 193–215

    ADS  Google Scholar 

  • P. Ledoux (1949) Contributions à l’étude de la structure interne des étoiles et de leur stabilité. Mémoires de la Société Royale des Sciences de Liège, Série 4, 9, 7–294

    Google Scholar 

  • P. Ledoux (1958) Astrophysics II: Stellar Structure, ed. by S. Flügge. Stellar stability. Handbuch der Physik, vol. 51 Springer, Berlin, pp. 605–688

    Google Scholar 

  • P. Ledoux, J. Perdang (1980) Asymptotic approximation for nonradial stellar oscillations. Bulletin de la Société Mathématique de Belgique 32, 133–159

    MathSciNet  Google Scholar 

  • P. Ledoux, P. Smeyers (1966) Sur le spectre des oscillations non radiales d’un modèle stellaire. Compte-Rendus de l’Académie des Sciences de Paris 262, 841–844

    ADS  Google Scholar 

  • P. Ledoux (1958) Th. Walraven, in Astrophysics II: Stellar Structure, ed. by S. Flügge. Variable stars. Handbuch der Physik, vol. 51 Springer, Berlin, pp. 353–604

    Google Scholar 

  • J.W. Leibacher, R.F. Stein (1981) The Sun as a Star, ed. by S.D. Jordan. Oscillations and pulsations. Centre National de la Recherche Scientifique, Paris. National Aeronautics and Space Administration, Washington, D.C., pp. 263–287

    Google Scholar 

  • D.J. Mullan (1989) g-mode pulsations in polytropes: high-precision eigenvalues and the approach to asymptotic behavior. Astrophys. J. 337, 1017–1022

    Article  ADS  Google Scholar 

  • D.J. Mullan, R.K. Ulrich (1988) Radial and nonradial pulsations of polytropes: high-precision eigenvalues and the approach of p-modes to asymptotic behavior. Astrophys. J. 331, 1013–1028

    Article  ADS  Google Scholar 

  • C.L. Pekeris (1938) Nonradial oscillations of stars. Astrophys. J. 88, 189–199

    Google Scholar 

  • R.D. Richtmyer (1978) Principles of Advanced Mathematical Physics, vol. 1. Springer, New York

    Book  MATH  Google Scholar 

  • S. Rosseland (1932) The theory of oscillating fluid globes. Publications from Oslo University Observatory 1, No. 2, 3–22

    Google Scholar 

  • E. Sauvenier-Goffin (1951) Note sur les pulsations non-radiales d’une sphère homogène compressible. Bulletin de la Société Royale des Sciences de Liège 20, 20–38

    MathSciNet  ADS  MATH  Google Scholar 

  • P. Smeyers (1963) Sur les oscillations non radiales adiabatiques d’étoiles massives. Acad. R. Belg. Bull. Cl. Sci. 5e sér. 49, 128–141

    Google Scholar 

  • P. Smeyers (1966a) Les oscillations non radiales et la convection dans les étoiles. Ann. d’Astrophys. 29, 539–548

    ADS  Google Scholar 

  • P. Smeyers (1966b) Les oscillations linéaires et adiabatiques de la sphère homogène. Acad. R. Belg. Bull. Cl. Sci. 5e sér. 52, 1126–1142

    Google Scholar 

  • P. Smeyers (1967) Les oscillations non radiales des étoiles massives. Bulletin de la Société Royale des Sciences de Liège, 36e année, no 7-8, 357–392

    Google Scholar 

  • T.E. Sterne (1937) Modes of radial oscillation. Mon. Not. R. Astron. Soc. 97, 582–593

    ADS  MATH  Google Scholar 

  • I. Tolstoy (1973) Wave Propagation. McGraw-Hill, New York

    Google Scholar 

  • C.L. Wolff (1979) Some simple properties of stellar pulsation modes. Astrophys. J. 227, 943–954

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Smeyers .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smeyers, P. (2010). Classification of the Spheroidal Normal Modes. In: Linear Isentropic Oscillations of Stars. Astrophysics and Space Science Library, vol 371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13030-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13030-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13029-8

  • Online ISBN: 978-3-642-13030-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics