Skip to main content

Introduction

  • Chapter
  • First Online:
  • 666 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 371))

Abstract

The study of the stellar oscillations is the preeminent way for the investigation of the stability, and the interpretation of the variability of stars, as it has strikingly been stated by Ledoux (1963a):

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    As we cannot make soundings in a star which would reveal us its internal constitution and chemical composition directly, we are restricted to construct stellar models whose macroscopic characteristics, mass M, luminosity L, radius R, or effective temperature T e, must be comparable to those of the real stars and satisfy various relations, relations MR, LR or LT e, revealed by the observations …

    The diagram of Hertzsprung-Russell …is one of the most effective means to summarise a great number of properties of a stellar population …

    Not only the static models and the theory of stellar evolution must render the values of M, R, L observed for individual stars and the relations existing between these quantities, but also, for the majority of the stars, these models must be stable. So, one can consider the various criterions …as additional conditions imposed on the models and, consequently, as as many guides in their elaboration.

    On the other hand, …many …stars …are not stable. And first all intrinsic variable stars whose variations must have an origin in some form of instability capable of manifesting itself for a small perturbation that will tend to grow until nonlinear factors stabilise it at a finite amplitude …

    In that way the stability criteria also furnish a natural approach to the study of the origin of at least plus or minus important and plus or minus regular variations of which a large number of stars are the seat …

    Essentially two approaches exist for the discussion of the stability of a system. We can apply a small perturbation to it, so small that, in the equations that govern the evolution of this perturbation, we can content ourselves with keeping only the terms of the first degree in this perturbation. The equations so obtained are said to be linearised and their solution describes the behaviour of the perturbation.

    … This naturally lets escape cases of instability with respect to finite perturbations.

    The other method is related to the principle of Dirichlet according to which the equilibrium state of a conservative mechanical system is stable if it corresponds to a minimum of the potential energy …This last method has not much been used in the stellar problem.

  2. 2.

    Ritter devoted a particular attention to the pulsation problem. In Chap. …I have investigated the oscillations of gaseous spheres, which correspond to those of incompressible fluids …Ritter investigates another class of oscillations, those by which the compressibility of the gas appears to full advantage; the particles move along the radius, the density remains constant in concentric layers, and the sphere keeps its spherical form. The problem is solved for small oscillations on the assumptions that 1. the sphere is of constant density, 2. the sphere remains of constant density during the pulsation, 3. the particles follow Poisson’s equation p v γ=  const. during their motion.

References

  • C. Aerts (2003) ENEAS: the European Network of Excellence in AsteroSeismology. Commun. Asteroseismology 143, 5–9

    ADS  Google Scholar 

  • C. Aerts, J. Christensen-Dalsgaard, D.W. Kurtz (2010) Asteroseismology. Springer, Dordrecht

    Google Scholar 

  • C. Aerts, A. Thoul, J. Daszyńska, R. Scuflaire, C. Waelkens, M.A. Dupret, E. Niemczura, A. Noels (2003) Asteroseismology of HD 129929: core overshooting and nonrigid rotation. Science 300, 1926–1928

    Article  ADS  Google Scholar 

  • H. Ando, Y. Osaki (1975) Nonadiabatic nonradial oscillations: an application to the five-minute oscillation of the Sun. Publ. Astron. Soc. Jpn. 27, 581–603

    ADS  Google Scholar 

  • N. Baker, R. Kippenhahn (1962) The pulsations of models of δ Cephei stars. Z. Astrophys. 54, 114–151

    ADS  MATH  Google Scholar 

  • N. Baker, R. Kippenhahn (1965) The pulsations of models of delta Cephei stars. II. Astrophys. J. 142, 868–889

    Article  ADS  Google Scholar 

  • T.R. Bedding, R.P. Butler, H. Kjeldsen, I.K. Baldry, S.J. O’Toole, C.G. Tinney, G.W. Marcy, F. Kienzle, F. Carrier (2001) Evidence for Solar-like oscillations in β Hydri. Astrophys. J. 549, L105–L108

    Article  ADS  Google Scholar 

  • F. Bouchy, F. Carrier (2001) p-mode observations on α Cen A. Astron. Astrophys. 374, L5–L8

    Article  ADS  Google Scholar 

  • M. Breger, G. Handler, R. Garrido, N. Audard, W. Zima, M. Paparo, F. Beichbuchner, L. Zhi-ping, J. Shi-yang, L. Zong-li, Z. Ai-ying, H. Pikall, A. Stankov, J.A. Guzik, M. Sperl, J. Krzesinski, W. Ogloza, G. Pajdosz, S. Zola, T. Thomassen, J.-E. Solheim, E. Serkowitsch, P. Reegen, T. Rumpf, A. Schmalwieser, M.H. Montgomery (1999) 30+ frequencies for the δ Scuti variable 4 Canum Venaticorum: results of the 1996 multisite campaign. Astron. Astrophys. 349, 225–235

    ADS  Google Scholar 

  • T.M. Brown, R.L. Gilliland (1994) Asteroseismology. Annu. Rev. Astron. Astrophys. 32, 37–82

    Article  ADS  Google Scholar 

  • F. Carrier, F. Bouchy, P. Eggenberger (2003) in Asteroseismology across the HR diagram, ed. by M. Thompson, M.S. Cunha, M.J.P.F.G. Monteiro. p-Mode observations on the K0 IV star δ Eridani. Reprinted from Astrophysics and Space Science, vol. 284, No. 1. Kluwer Academic, Dordrecht, pp. 311–314

    Google Scholar 

  • G. Chanmugam (1972) White dwarfs — Pulsation periods explained in terms of non-radial oscillations and gravity modes. Nat. Phys. Sci. 236, 83

    ADS  Google Scholar 

  • J. Christensen-Dalsgaard (1988) in Advances in Helio- and Asteroseismology, ed. by J. Christensen-Dalsgaard, S. Frandsen. An overview of helio- and asteroseismology. International Astronomical Union Symposium 123, International Astronomical Union, Reidel Publishing Company, Dordrecht, pp. 3–18

    Google Scholar 

  • J. Christensen-Dalsgaard, D.O. Gough (2001) On the dipolar f mode of stellar oscillation. Mon. Not. R. Astron. Soc. 326, 1115–1121

    Article  ADS  Google Scholar 

  • J. Christensen-Dalsgaard, D. Gough, J. Toomre (1985) Seismology of the Sun. Science 229, 923–931

    Google Scholar 

  • A. Claverie, G.R. Isaak, C.P. McLeod, H.B. van der Raay, T. Roca Cortes (1979) Solar structure from global studies of the 5-minute oscillation. Nature 282, 591–594

    Article  ADS  Google Scholar 

  • T.G. Cowling (1941) The non-radial oscillations of polytropic stars. Mon. Not. R. Astron. Soc. 101, 367–375

    MathSciNet  ADS  Google Scholar 

  • J.P. Cox (1974) Pulsating stars. Rep. Prog. Phys. 37, 563–698

    Article  ADS  Google Scholar 

  • J.P. Cox (1980) Theory of Stellar Pulsation. The University Press, Princeton

    Google Scholar 

  • J.P. Cox, C. Whitney (1958) Stellar pulsation. IV. A semi-theoretical period-luminosity relation for classical Cepheids. Astrophys. J. 127, 561–572

    Google Scholar 

  • F.A. Dahlen, J. Tromp (1998) Theoretical Global Seismology. The University Press, Princeton

    Google Scholar 

  • P. Degroote, C. Aerts, A. Baglin, A. Miglio, M. Briquet, A. Noels, E. Niemczura, J. Montalban, S. Bloemen, R. Oreiro, M. Vuc̀ković, K. Smolders, M. Auvergne, F. Baudin, C. Catala, E. Michel (2010) Deviations from a uniform period spacing of gravity modes in a massive star. Nature 464, 259–261

    Google Scholar 

  • J. De Ridder, C. Barban, F. Carrier, A. Mazumdar, P. Eggenberger, C. Aerts, S. Deruyter, J. Vanautgaerden (2006) Discovery of solar-like oscillations in the red giant ε Ophiuchi. Astron. Astrophys. 448, 689–695

    Article  ADS  Google Scholar 

  • J. De Ridder, C. Barban, F. Baudin, F. Carrier, A.P. Hatzes, S. Hekker, T. Kallinger, W.W. Weiss, A. Baglin, M. Auvergne, R. Samadi, P. Barge, M. Deleuil (2009) Non-radial oscillation modes with long lifetimes in giant stars. Nature 459, 398–400

    Article  ADS  Google Scholar 

  • F.-L. Deubner (1975) Observations of low wavenumber nonradial eigenmodes of the Sun. Astron. Astrophys. 44, 371–375

    ADS  Google Scholar 

  • A.S. Eddington (1988) The Internal Constitution of the Stars. The University Press, Cambridge, reedition

    Google Scholar 

  • R. Emden (1907) Gaskugeln: Anwendungen der Mechanischen Wärmtetheorie auf Kosmologische und Meteorologische Probleme. Teubner, Leipzig

    Google Scholar 

  • L. Eyer, C. Aerts (2000) A search for new γ Doradus stars in the Geneva photometric database. Astron. Astrophys. 361, 201–206

    ADS  Google Scholar 

  • E. Fossat, G. Ricort (1975) Photospheric oscillations. I. Large scale observations by optical resonance method. Astron. Astrophys. 43, 243–252

    Google Scholar 

  • S. Frandsen, F. Carrier, C. Aerts, D. Stello, T. Maas, M. Burnet, H. Bruntt, T.C. Teixeira, J.R. de Medeiros, F. Bouchy, H. Kjeldsen, F. Pijpers, J. Christensen-Dalsgaard (2002) Detection of Solar-like oscillations in the G7 giant star ξ Hya. Astron. Astrophys. 394, L5–L8

    Article  ADS  Google Scholar 

  • A. Gautschy (1996) The becoming of the theory of stellar pulsations. Basel Preprint Series 86, 1–23

    Google Scholar 

  • A. Gautschy (1997) The development of the theory of stellar pulsations. Vistas Astron. 41, 95–115

    Article  MathSciNet  ADS  Google Scholar 

  • A. Gautschy, H. Saio (1995) Stellar pulsations across the HR diagram: Part 1. Annu. Rev. Astron. Astrophys. 33, 75–113

    Article  ADS  Google Scholar 

  • D.O. Gough (1996) To the editors of ‘The Observatory’: Astereoseismology. Observatory 116, 313–314

    ADS  Google Scholar 

  • D.O. Gough (2001) The birth of asteroseismology. Science 291, 2325–2327

    Google Scholar 

  • G. Grec, E. Fossat (1977) Photospheric oscillations: III. Search for long period modes. Astron. Astrophys. 55, 411–420

    ADS  Google Scholar 

  • G. Grec, E. Fossat, M. Pomerantz (1980) Solar oscillations: full disk observations from the geographic South Pole. Nature 288, 541–544

    Article  ADS  Google Scholar 

  • S.D. Kawaler (2003) Taking the pulse of a massive star. Science 300, 1885–1886

    Article  Google Scholar 

  • K. Kolenberg, E. Guggenberger, T. Medupe (2008) Johnson photometry of southern Blazhko targets. Commun. Asteroseismology 153, 67–83

    Article  ADS  Google Scholar 

  • A.U. Landolt (1968) A new short-period blue variable. Astrophys. J. 153, 151–164

    Article  ADS  Google Scholar 

  • P. Ledoux (1963b) Star Evolution, ed. by L. Gratton. Stellar stability and stellar evolution. Proceedings of the International School of Physics “Enrico Fermi”, Course XXVIII. Academic, New York, pp. 394–445

    Google Scholar 

  • P. Ledoux (1974) Stellar Instability and Evolution, ed. by P. Ledoux, A. Noels, A.W. Rodgers. Non-radial oscillations. International Astronomical Union Symposium, vol. 59. Reidel, Dordrecht, pp. 135–173

    Google Scholar 

  • J.W. Leibacher, R.F. Stein (1971) A new description of the solar five-minute oscillation. Astrophys. Lett. 7, 191–192

    ADS  Google Scholar 

  • R.B. Leighton (1961) Aerodynamic Phenomena in Stellar Atmospheres, ed. by R.N. Thomas. Untitled comments on supergranulation and 5-min oscillations. International Astronomical Symposium 12, Il Nuovo Cimento Supplement Series 10, vol. 21, 321–327

    Google Scholar 

  • R.B. Leighton, R.W. Noyes, G.W. Simon (1962) Velocity fields in the solar atmosphere. I. Preliminary report. Astrophys. J. 135, 474–509

    Article  ADS  Google Scholar 

  • K.G. Libbrecht (1988) Solar and stellar seismology. Space Sci. Rev. 47, 275–301

    Article  ADS  Google Scholar 

  • K.G. Libbrecht, M.F. Woodard, J.M. Kaufman (1990) Frequencies of solar oscillations. Astrophys. J. Suppl. Ser. 74, 1129–1149

    Article  ADS  Google Scholar 

  • A. Olech, J. Kaluzny, I.B. Thompson, W. Pych, W. Krzeminski, A. Schwarzenberg-Czerny (1999) RR Lyrae variables in the globular cluster M55. The first evidence for nonradial pulsations in RR Lyrae stars. Astron. J. 118, 442–452

    Google Scholar 

  • Y. Osaki (1975) Nonradial oscillations of a 10 solar mass star in the main-sequence stage. Publ. Astron. Soc. Jpn. 27, 237–258

    ADS  Google Scholar 

  • C.L. Pekeris (1938) Nonradial oscillations of stars. Astrophys. J. 88, 189–199

    Google Scholar 

  • E.L. Robinson, S.O. Kepler, R.E. Nather (1982) Multicolor variations of the ZZ Ceti stars. Astrophys. J. 259, 219–231

    Article  ADS  Google Scholar 

  • S. Rosseland (1932) The theory of oscillating fluid globes. Publications from Oslo University Observatory 1, No. 2, 3–22

    Google Scholar 

  • S. Rosseland (1949) The Pulsation Theory of Variable Stars. The University Press, Oxford

    Google Scholar 

  • H. Shapley (1914) On the nature and cause of Cepheid variation. Astrophys. J. 40, 448–465

    Article  ADS  Google Scholar 

  • H. Shibahashi (1990) Progress of Seismology of the Sun and Stars, ed. by Y. Osaki, H. Shibahashi. Introductory review of solar and stellar oscillations. Proceedings of the Oji International Seminar Hakone, Japan 1989. Springer, Berlin, pp. 3–19

    Google Scholar 

  • W. Thomson (1863) Oscillations of a liquid sphere, Sects. 55–58 in Dynamical problems regarding elastic spheroidal shells and spheroids of incompressible liquid. Philos. Trans. R. Soc. Lond. 153, 583–619

    Google Scholar 

  • R.C. Tolman (1939) On the stability of spheres of simple mechanical fluid held together by Newtonian gravitation. Astrophys. J. 90, 541–567

    Article  MathSciNet  ADS  Google Scholar 

  • R.K. Ulrich (1970) The five-minute oscillations on the solar surface. Astrophys. J. 162, 993–1002

    Article  ADS  Google Scholar 

  • R.K. Ulrich (1984) Solar Seismology from Space, ed. by R.K. Ulrich, J. Harvey, E.J. Rhodes Jr., J. Toomre. Conference summary. A Conference at Snowmass, Colorado, pp. 3–5. JPL Publication 84–84

    Google Scholar 

  • W. Unno, Y. Osaki, H. Ando, H. Saio, H. Shibahashi (1989) Nonradial Oscillations of Stars. The University Press, Tokyo

    Google Scholar 

  • T. Van Hoolst, W.A. Dziembowski, S.D. Kawaler (1998) Unstable non-radial modes in radial pulsators: theory and an example. Mon. Not. R. Astron. Soc. 297, 536–544

    Article  ADS  Google Scholar 

  • C.L. Waelkens (1987) Stellar Pulsation, ed. by A.N. Cox, W.M. Sparks, S.G. Starrfield. Periodic line profile and photometric variations in mid-B stars. Lecture Notes in Physics, vol. 274. Springer, Berlin, pp. 75–78

    Google Scholar 

  • B. Warner, E.L. Robinson (1972) Non-radial pulsations in white dwarf stars. Nat. Phys. Sci. 239, 2–7

    ADS  Google Scholar 

  • C.L. Wolff (1972) The five-minute oscillations as nonradial pulsations of the entire Sun. Astrophys. J. 177, L87–L92

    Article  ADS  Google Scholar 

  • S.A. Zhevakin (1963) Physical basis of the pulsation theory of variable stars. Annu. Rev. Astron. Astrophys. 1, 367–400

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Smeyers .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smeyers, P. (2010). Introduction. In: Linear Isentropic Oscillations of Stars. Astrophysics and Space Science Library, vol 371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13030-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13030-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13029-8

  • Online ISBN: 978-3-642-13030-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics