Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 979 Accesses

Abstract

Many oxide/oxide composite nanocrystals were synthesized in continuous flow SCW processes in short time (e.g., 0.4 s∼2 min) from metal cations via hydrolysis and subsequent dehydration. Metal particles could be produced by further reduction of the metal oxide in SCW. These particles included ferrite magnetic pigments [Fe3O4, MFe2O4 (M = Co, Ni, Zn), NixCo1−xFe2O4, \({\textrm {BaO}}{\scriptscriptstyle{\bullet}}6{\textrm{Fe}}_{2} {\textrm{O}}_{3}\)] for recording media, YAG: Tb phosphor for cathode ray tube screen, materials (LiCoO2, LiMn2O4) for lithium ion battery cathode, catalysts for car exhausts [Ce1−xZrxO2 (x = 0∼1), Zr1−xInxO2, Zr1−xYxO2], oxidation (La2CuO4) and gasification (ZrO2, CeO2, Ni), photocatalytic materials (K2Ti6O13, ZnO, TiO2) for water decomposition, materials (SnO2, ZnO, In2O3) for electronics industry, supporting materials (AlOOH) for catalysts, and many other oxides. Oxides were also produced in batch reactors for long reaction time but with larger size. Organic capping ligands were successfully used to control and stabilize particles size (TiO2, Fe2O3, Cu, CeO2). Oxide nanoparticles could also be synthesized via other chemical reactions in SCW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal synthesis of boehmite particles in subcritical and supercritical water. J. Am. Ceram. Soc. 75, 2615–2618 (1992)

    Article  CAS  Google Scholar 

  2. T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal crystllization of metal oxides particles in supercritical water. J. Am. Ceram. Soc. 75, 1019–1022 (1992)

    Article  CAS  Google Scholar 

  3. T. Adschiri, Y. Hakuta, K. Arai, Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind. Eng. Chem. Res. 39, 4901–4907 (2000)

    Article  CAS  Google Scholar 

  4. Y. Hakuda, T. Ajiri, K. Arai, Hydrothermal synthesis of metal oxide fine particles using supercritical water. Chorinkai Saishin Gijutsu 4, 11–15 (2000)

    CAS  Google Scholar 

  5. Y. Hakuta, T. Ajiri, K. Arai, Synthesis of micro-particle metal oxides by supercritical hydrothermal method. Kemikaru Enjiniyaringu 45, 621–626 (2000)

    CAS  Google Scholar 

  6. T. Adschiri, Production of metal oxide fine particles via hydrothermal synthesis under supercritical conditions. Seramikkusu 35, 534–537 (2000)

    CAS  Google Scholar 

  7. D. Mishra, S. Anand, R.K. Panda, R.P. Das, Effect of anions during hydrothermal preparation of boehmites. Mater. Lett. 53, 133–137 (2002)

    Article  CAS  Google Scholar 

  8. Y. Hakuta, T. Adschiri, H. Hirakoso, K. Arai, Chemical equilibria and particle morphology of boehmite (AlOOH) in sub and supercritical water. Fluid Phase Equilib. 158–160, 733–742 (1999)

    Article  Google Scholar 

  9. T. Adschiri, Y. Hakuta, K. Sue, K. Arai, Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. J. Nanopart. Res. 3(2–3), 227–235 (2001)

    Article  CAS  Google Scholar 

  10. Y. Hakuta, H. Ura, H. Hayashi, K. Arai, Effects of hydrothermal synthetic conditions on the particle size of γ-AlO(OH) in sub and supercritical water using a flow reaction system. Mater. Chem. Phys. 93(2–3), 466–472 (2005)

    Article  CAS  Google Scholar 

  11. T. Noguchi, K. Matsui, N.M. Islam, Y. Hakuta, H. Hayashi, Rapid synthesis of γ-Al2O3 nanoparticles in supercritical water by continuous hydrothermal flow reaction system. J. Supercrit. Fluids 46(2), 129–136 (2008)

    Article  CAS  Google Scholar 

  12. T. Mousavand, S. Ohara, M. Umetsu, J. Zhang, S. Takami, T. Naka, T. Adschiri, Hydrothermal synthesis and in situ surface modification of boehmite nanoparticles in supercritical water. J. Supercrit. Fluids 40(3), 397–401(2007)

    Article  CAS  Google Scholar 

  13. M.N. Danchevskaya, S.N. Torbin, Y.D. Ivakin, G.P. Muravieva, Role of precursor compaction and water vapour pressure during synthesis of corundum in supercritical water. J. Phys. Condens. Matter. 16, S1187–S1196 (2004)

    Article  CAS  Google Scholar 

  14. M.N. Danchevskaya, Y.D. Ivakin, S.N. Torbin, G.P. Panasyuk, V.N. Belan, I.L. Voroshilov, Scientific basis of technology of fine-crystalline quartz and corundum. High Pressure Res. 20(1–6), 229–239 (2001)

    Article  Google Scholar 

  15. P.K. Panda, V.A. Jaleel, S.U. Devi, Hydrothermal synthesis of boehmite and alpha-alumina from Bayer's alumina trihydrate. J. Mater. Sci. 41(24), 8386–8389 (2006)

    Article  CAS  Google Scholar 

  16. T. Wang, R.L. Smith Jr., H. Inomata, K. Arai, Reactive phase behavior of aluminum nitrate in high temperature and supercritical water. Hydrometallurgy 65(2–3), 159–175 (2002)

    Article  CAS  Google Scholar 

  17. T. Kodama, Y. Wada, T. Yamamoto, M. Tsuji, Y. Tamaura, Synthesis and characterization of ultrafine nickel(II)-bearing ferrites (NixFe3–xO4, x = 0.14–1.0). J. Mater. Chem. 5, 1413–1418 (1995)

    Article  CAS  Google Scholar 

  18. T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal crystllization of metal oxides particles in supercritical water. J. Am. Ceram. Soc. 75, 1019–1022 (1992)

    Article  CAS  Google Scholar 

  19. A. Cabanas, M. Poliakoff, The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. J. Mater. Chem. 11, 1408–1416 (2001)

    Article  CAS  Google Scholar 

  20. M.H. Nilsen, C. Nordhei, A.L. Ramstad, D.G. Nicholson, XAS (XANES and EXAFS) investigations of nanoparticulate ferrites synthesized continuously in near critical and supercritical water. J. Phys. Chem. C 111(17), 6252–6262 (2007)

    Article  CAS  Google Scholar 

  21. T. Sato et al., Rapid and continuous production of ferrite nanoparticles by hydrothermal synthesis at 673 K and 30 MPa. Ind. Eng. Chem. Res. 47(6), 1855–1860 (2008)

    Article  CAS  Google Scholar 

  22. C.B. Xu, A.S. Teja, Supercritical water synthesis and deposition of iron oxide (α-Fe2O3) nanoparticles in activated carbon. J. Supercrit. Fluids 39(1), 135–141 (2006)

    Article  CAS  Google Scholar 

  23. L.J. Cote, A.S. Teja, A.P. Wilkinson, Z.J. Zhang, Continuous hydrothermal synthesis of CoFe2O4 nanoparticles. Fluid Phase Equilib. 210(2), 307–317 (2003)

    Article  CAS  Google Scholar 

  24. N. Millot, B. Xin, C. Pighini, D. Aymes, Hydrothermal synthesis of nanostructured inorganic powders by a continuous process under supercritical conditions. J. Eur. Ceram. Soc. 25(12), 2013–2016 (2005)

    Article  CAS  Google Scholar 

  25. D. Zhao, X. Wu, H. Guan, E. Han, Study on supercritical hydrothermal synthesis of CoFe2O4 nanoparticles. J. Supercrit. Fluids 42(2), 226–233 (2007)

    Article  CAS  Google Scholar 

  26. N. Millot, S. Le Gallet, D. Aymes, F. Bernard, Y. Grin, Spark plasma sintering of cobalt ferrite nanopowders prepared by coprecipitation and hydrothermal synthesis. J. Eur. Ceram. Soc. 27(2–3), 921–926 (2007)

    Article  CAS  Google Scholar 

  27. B.T. Shirk, W.R. Buessen, Magnetic properties of barium ferrite formed by crystallization of a glass. J. Am. Ceram. Soc. 53, 192–196 (1970)

    Article  CAS  Google Scholar 

  28. Y. Hakuta, T. Adschiri, T. Suzuki, T. Chida, K. Seino, K. Arai, Flow method for rapidly producing barium hexa-ferrite particles in supercritical water. J. Am. Ceram. Soc. 81, 2461–2464 (1998)

    Article  CAS  Google Scholar 

  29. S.C. Nam, S.S. Park, G.J. Kim, Preparation of Ba-ferrite particles using the supercritical water crystallization method. J. Ind. Eng. Chem. 7, 38–43 (2001)

    CAS  Google Scholar 

  30. S. Rho, S. Park, Influence of stoichiometry and alkalinity on barium hexaferrite formation via the supercritical water crystallization method. Korean J. Chem. Eng. 19, 120–125 (2002)

    Article  CAS  Google Scholar 

  31. S.C. Nam, G.J. Kim, Characterization of barium hexaferrite produced by varying the reaction parameters at the mixing-points in a supercritical water crystallization process. Korean J. Chem. Eng. 21(3), 582–588 (2004)

    Article  CAS  Google Scholar 

  32. M. Drofenik, M. Kristl, A. Znidarsic, D. Hanzel, D. Lisjak, Hydrothermal synthesis of Ba-hexaferrite nanoparticles. J. Am. Ceram. Soc. 90(7), 2057–2061 (2007)

    Article  CAS  Google Scholar 

  33. Y. Hakuta, K. Seino, H. Ura, T. Adschiri, H. Takizawab, K. Arai, Production of phosphor (YAG: Tb) fine particles by hydrothermal synthesis in supercritical water. J. Mater. Chem. 9, 2671–2674 (1999)

    Article  CAS  Google Scholar 

  34. T. Haganuma, Y. Hakuta, T. Adschiri, K. Arai, Synthesis of phosphor (YAG: Tb) fine particles by hydrothermal synthesis on supercritical water. Koatsuryoku no Kagaku to Gijutsu 10, 98 (2000)

    CAS  Google Scholar 

  35. Y. Hakuta, T. Haganuma, K. Sue, T. Adschiri, K. Arai, Continuous production of phosphor YAG: Tb nanoparticles by hydrothermal synthesis in supercritical water. Mater. Res. Bull. 38(7), 1257–1265 (2003)

    Article  CAS  Google Scholar 

  36. A. Cabanas, J. Li, P. Blood, T. Chudoba, W. Lojkowski, M. Poliakoff, E. Lester, Synthesis of nanoparticulate yttrium aluminum garnet in supercritical water-ethanol mixtures. J. Supercrit. Fluids 40(2), 284–292 (2007)

    Article  CAS  Google Scholar 

  37. M.J. Yoon, J.H. In, H.C. Lee, C.H. Lee, Comparison of YAG: Eu phosphor synthesized by supercritical water and solid-state methods in a batch reactor. Korean J. Chem. Eng. 23(5), 842–846 (2006)

    Article  CAS  Google Scholar 

  38. J.H. In, H.C. Lee, M.J. Yoon, K.K. Lee, J.W. Lee, C.H. Lee, Synthesis of nano-sized YAG: Eu3+ phosphor in continuous supercritical water system. J. Supercrit. Fluids 40(3), 389–396 (2007)

    Article  CAS  Google Scholar 

  39. M.J. Yoon, Y.S. Bae, S.H. Son, J.W. Lee, C.H. Lee, Comparison of YAG: Eu phosphors synthesized by supercritical water in batch and continuous reactors. Korean J. Chem. Eng. 24(5), 877–880 (2007)

    Article  CAS  Google Scholar 

  40. M.K. Devaraju, S. Yin, T. Sato, Solvothermal synthesis, controlled morphology and optical properties of Y2O3:Eu3+ nanocrystals. J. Cryst. Growth 311(3), 580–584 (2009)

    Article  CAS  Google Scholar 

  41. K. Kanamura, A. Goto, R.Y. Ho, T. Umegaki, K. Toyoshima, K. Okada, Y. Hakuta, T. Adschiri, K. Arai, Preparation and electrochemical characterization of LiCoO2 particles prepared by supercritical water synthesis. Electrochem. Solid-State Lett. 3, 256–258 (2000)

    Article  CAS  Google Scholar 

  42. K. Kanamura, T. Umegaki, K. Toyoshima, K. Okada, Y. Hakuta, T. Adschiri, K. Arai, Electrochemical characteristics of LiCoO2 and LiMn2O4 prepared in supercritical water. Key Eng. Mater. 181–182, 147–150 (2000)

    Article  Google Scholar 

  43. T. Adschiri, Y. Hakuta, K. Kanamura, K. Arai, Continuous production of LiCoO2 fine crystals for lithium batteries by hydrothermal synthesis under supercritical condition. High Pressure Res. 20(1–6), 373–384 (2001)

    Article  Google Scholar 

  44. J.H. Lee, K.S. Jun, H.J. Choi, W.I. Cho, B.W. Cho, Synthesis of lithium manganese oxide particles in supercritical water. Kongop Hwahak 12, 859–863 (2001)

    CAS  Google Scholar 

  45. K. Kanamura, K. Dokko, T. Kaizawa, Synthesis of spinel LiMn2O4 by a hydrothermal process in supercritical water with heat-treatment. J. Electrochem. Soc. 152(2), A391–A395 (2005)

    Article  CAS  Google Scholar 

  46. J.H. Lee, J.Y. Ham, Synthesis of manganese oxide particles in supercritical water. Korean J. Chem. Eng. 23(5), 714–719 (2006)

    Article  CAS  Google Scholar 

  47. A.A. Galkin, B.G. Kostyuk, N.N. Kuznetsova, A.O. Turakulova, V.V. Lunin, M. Polyakov, Unusual approaches to the preparation of heterogeneous catalysts and supports using water in subcritical and supercritical states. Kinetika i kataliz 42, 172–181 (2001)

    Google Scholar 

  48. A. Cabanas, J.A. Darr, E. Lester, M. Poliakoff, Continuous hydrothermal synthesis of inorganic materials in a near critical water flow reactor; the one-step synthesis of nano-particulate Ce1–xZrxO2 (x = 0–1) solid solutions. J. Mater. Chem. 11, 561–568 (2001)

    Article  Google Scholar 

  49. Y. Hakuta, S. Onai, H. Terayama, T. Adschiri, K. Arai, Production of ultra-fine ceria particles by hydrothermal synthesis under supercritical conditions. J. Mater. Sci. Lett. 17, 1211–1213 (1998)

    Article  CAS  Google Scholar 

  50. M. Umetsu, X. Man, K. Okuda, M. Tahereh, S. Ohara, J. Zhang, S. Takami, T. Adschiri, Biomass-assisted hydrothermal synthesis of ceria nanoparticle – A new application of lignin as a bio-nanopool. Chem. Lett. 35(7), 732–733 (2006)

    Article  CAS  Google Scholar 

  51. D. Zhao, E. Han, X. Wu, H. Guan, Hydrothermal synthesis of ceria nanoparticles supported on carbon nanotubes in supercritical water. Mater. Lett. 60(29–30), 3544–3547 (2006)

    Article  CAS  Google Scholar 

  52. J. Zhang, S. Ohara, M. Umetsu, T. Naka, Y. Hatakeyama, T. Adschiri, Colloidal ceria nanocrystals: A tailor-made crystal morphology in supercritical water. Adv. Mater. 19(2), 203–206 (2007)

    Article  CAS  Google Scholar 

  53. J.R. Kim, W.J. Myeong, S.K. Ihm, Characteristics in oxygen storage capacity of ceria-zirconia mixed oxides prepared by continuous hydrothermal synthesis in supercritical water. Appl. Catal. B Environ. 71(1–2), 57–63 (2007)

    Article  CAS  Google Scholar 

  54. Y. Hakuta, T. Ohashi, H. Hayashi, K. Arai, Hydrothermal synthesis of zirconia nanocrystals in supercritical water. J. Mater. Res. 19(8), 2230–2234 (2004)

    Article  CAS  Google Scholar 

  55. J. Becker, P. Hald, M. Bremholm, J.S. Pedersen, J. Chevallier, S.B. Iversen, B.B. Iversen, Critical size of crystalline ZrO2 nanoparticles synthesized in near- and supercritical water and supercritical isopropyl alcohol. ACS Nano 2(5), 1058–1068 (2008)

    Article  CAS  Google Scholar 

  56. A.A. Galkin, A.O. Turakulova, V.V. Lunin, J. Grams, The oxidation of CO and adsorption of hydrogen on nanocrystalline catalysts of the composition Pd/ZrO2(TiO2) prepared in sub- and supercritical water. Russ. J. Phys. Chem. 79(6), 881–885 (2005)

    CAS  Google Scholar 

  57. H. Hobbs, S. Briddon, E. Lester, The synthesis and fluorescent properties of nanoparticulate ZrO2 doped with Eu using continuous hydrothermal synthesis. Green Chem. 11(4), 484–491 (2009)

    Article  CAS  Google Scholar 

  58. A. Aimable, B. Xin, N. Millot, D. Aymes, Continuous hydrothermal synthesis of nanometric BaZrO3 in supercritical water. J. Solid State Chem. 181(1), 183–189 (2008)

    Article  CAS  Google Scholar 

  59. R.B. Yahya, H. Hayashi, T. Nagase, T. Ebina, Y. Onodera, N. Saitoh, Hydrothermal synthesis of potassium hexatitanates under subcritical and supercritical water conditions and its application in photocatalysis. Chem. Mater. 13, 842–847 (2001)

    Article  CAS  Google Scholar 

  60. Y. Inoue, T. Kubokawa, K. Sato, Photocatalytic activity of alkali-metal titanates combined with ruthenium in the decomposition of water. J. Phys. Chem. 95, 4059–4063 (1991)

    Article  CAS  Google Scholar 

  61. T. Takata, Y. Furumi, K. Shinohara, A. Tanaka, M. Hara, J.N. Kondo, K. Domen, Photocatalytic decomposition of water on spontaneously hydrated layered perovskites. Chem. Mater. 9, 1063–1064 (1997)

    Article  CAS  Google Scholar 

  62. Y. Inoue, M. Kohno, K. Sato, S. Ogura, Photocatalytic activity for water decomposition of RuO2-combined M2Ti6O13 (M = Na, K, Rb, Cs). Appl. Surf. Sci. 121–122, 521–524 (1997)

    Google Scholar 

  63. Y. Hakuta, H. Hayashi, K. Arai, Hydrothermal synthesis of photocatalyst potassium hexatitanate nanowires under supercritical conditions. J. Mater. Sci. 39(15), 4977–4980 (2004)

    Article  CAS  Google Scholar 

  64. W. Habicht, N. Boukis, G. Franz, O. Walter, E. Dinjus, Exploring hydrothermally grown potassium titanate fibers by STEM-in-SEM/EDX and XRD. Microsc. Microanal. 12(4), 322–326 (2006)

    Article  CAS  Google Scholar 

  65. B. Li, Y. Hakuta, H. Hayashi, Hydrothermal synthesis of crystalline rectangular titanoniobate particles. Chem. Commun. (13), 1732–1734 (2005)

    Google Scholar 

  66. B. Li, Y. Hakuta, H. Hayashi, Synthesis of potassium titanoniobate in supercritical and subcritical water and investigations on its photocatalytic performance. J. Supercrit. Fluids 39(1), 63–69 (2006)

    Article  CAS  Google Scholar 

  67. H. Hayashi, Y. Hakuta, Y. Kurata, Hydrothermal synthesis of potassium niobate photocatalysts under subcritical and supercritical water conditions. J. Mater. Chem. 14(13), 2046–2051 (2004)

    Article  CAS  Google Scholar 

  68. B. Li, Y. Hakuta, H. Hayashi, Hydrothermal synthesis of KNbO3 powders in supercritical water and its nonlinear optical properties. J. Supercrit. Fluids 35(3), 254–259, (2005)

    Article  CAS  Google Scholar 

  69. Y. Hakuta, H. Ura, H. Hayashi, K. Arai, Continuous production of BaTiO3 nanoparticles by hydrothermal synthesis. Ind. Eng. Chem. Res. 44(4), 840–846 (2005)

    Article  CAS  Google Scholar 

  70. Y. Hakuta, H. Ura, H. Hayashi, K. Arai, Effect of water density on polymorph of BaTiO3 nanoparticles synthesized under sub and supercritical water conditions. Mater. Lett. 59(11), 1387–1390 (2005)

    Article  CAS  Google Scholar 

  71. K. Matsui, T. Noguchi, N.M. Islam, Y. Hakuta, H. Hayashi, Rapid synthesis of BaTiO3 nanoparticles in supercritical water by continuous hydrothermal flow reaction system. J. Cryst. Growth 310(10), 2584–2589 (2008)

    Article  CAS  Google Scholar 

  72. H. Reveron, C. Aymonier, A. Loppinet-Serani, C. Elissalde, M. Maglione, F. Cansell, Single-step synthesis of well-crystallized and pure barium titanate nanoparticles in supercritical fluids. Nanotechnology 16(8), 1137–1143 (2005)

    Article  CAS  Google Scholar 

  73. M. Atashfaraz, M. Shariaty-Niassar, S. Ohara, K. Minami, M. Umetsu, T. Naka, T. Adschiri, Effect of titanium dioxide solubility on the formation of BaTiO3 nanoparticles in supercritical water. Fluid Phase Equilib. 257(2), 233–237 (2007)

    Article  CAS  Google Scholar 

  74. H. Hayashi, K. Torii, Hydrothermal synthesis of titania photocatalyst under subcritical and supercritical water conditions. J. Mater. Chem. 12(12), 3671–3676 (2002)

    Article  CAS  Google Scholar 

  75. P. Hald, J. Becker, M. Bremholm, J.S. Pedersen, J. Chevallier, S.B. Iversen, B.B. Iversen, Supercritical propanol-water synthesis and comprehensive size characterisation of highly crystalline anatase TiO2 nanoparticles. J. Solid State Chem. 179(8), 2674–2680 (2006)

    Article  CAS  Google Scholar 

  76. R. Viswanathan, R.B. Gupta, Formation of zinc oxide nanoparticles in supercritical water. J. Supercrit. Fluids 27(2), 187–193 (2003)

    Article  CAS  Google Scholar 

  77. K. Sue, K. Murata, K. Kimura, K. Arai, Continuous synthesis of zinc oxide nanoparticles in supercritical water. Green Chem. 5(5), 659–662 (2003)

    Article  CAS  Google Scholar 

  78. S. Ohara, T. Mousavand, T. Sasaki, M. Umetsu, T. Naka, T. Adschiri, Continuous production of fine zinc oxide nanorods by hydrothermal synthesis in supercritical water. J. Mater. Sci. 43(7), 2393–2296 (2008)

    Article  CAS  Google Scholar 

  79. K. Sue, K. Kimura, K. Murata, K. Arai, Hydrothermal synthesis of zinc oxide crystals in homogeneous mixture of carbon dioxide, hydrogen, and water. Chem. Lett. 33(6), 708–709 (2004)

    Article  CAS  Google Scholar 

  80. K. Sue, K. Kimura, K. Murata, K. Arai, Effect of cations and anions on properties of zinc oxide particles synthesized in supercritical water. J. Supercrit. Fluids 30(3), 325–331 (2004)

    Article  CAS  Google Scholar 

  81. K. Sue, K. Kimura, K. Arai, Hydrothermal synthesis of ZnO nanocrystals using microreactor. Mater. Lett. 58(25), 3229–3231 (2004)

    Article  CAS  Google Scholar 

  82. K.W. Sue, K. Kimura, M. Yamamoto, K. Arai, Rapid hydrothermal synthesis of ZnO nanorods without organics. Mater. Lett. 58(26), 3350–3352 (2004)

    Article  CAS  Google Scholar 

  83. R. Viswanathan, G.D. Lilly, W.F. Gale, R.B. Gupta, Formation of zinc oxide-titanium dioxide composite nanoparticles in supercritical water. Ind. Eng. Chem. Res. 42(22), 5535–5540 (2003)

    Article  CAS  Google Scholar 

  84. A.A. Vostrikov, A.V. Shishkin, N.I. Timoshenko, Synthesis of zinc oxide nanostructures during zinc oxidation by sub- and supercritical water. Tech. Phys. Lett. 33(1), 30–34 (2007)

    Article  CAS  Google Scholar 

  85. A. Levy, M. Watanabe, Y. Aizawa, H. Inomata, K. Sue, Synthesis of nanophased metal oxides in supercritical water: Catalysts for biomass conversion. Int. J. Appl. Ceram. Technol. 3(5), 337–344 (2006)

    Article  CAS  Google Scholar 

  86. K. Sue, N. Kakinuma, T. Adschiri, K. Arai, Continuous production of nickel fine particles by hydrogen reduction in near-critical water. Ind. Eng. Chem. Res. 43(9), 2073–2078 (2004)

    Article  CAS  Google Scholar 

  87. P. Boldrin, A.K. Hebb, A.A. Chaudhry, L. Otley, B. Thiebaut, P. Bishop, J.A. Darr, Direct synthesis of nanosized NiCo2O4 spinel and related compounds via continuous hydrothermal synthesis methods. Ind. Eng. Chem. Res. 46(14), 4830–4838 (2007)

    Article  CAS  Google Scholar 

  88. K. Sue, A. Suzuki, M. Suzuki, K. Arai, Y. Hakuta, H. Hayashi, T. Hiaki, One-pot synthesis of nickel particles in supercritical water. Ind. Eng. Chem. Res. 45(2), 623–626 (2006)

    Article  CAS  Google Scholar 

  89. K. Sue, A. Suzuki, M. Suzuki, K. Arai, T. Ohashi, K. Matsui, Y. Hakuta, H. Hayashi, T. Hiaki, Synthesis of Ni nanoparticles by reduction of NiO prepared with a flow-through supercritical water method. Chem. Lett. 35(8), 960–961 (2006)

    Article  CAS  Google Scholar 

  90. D. Rangappa, S. Ohara, T. Naka, A. Kondo, M. Ishii, T. Adschiri, Synthesis and organic modification of CoAl2O4 nanocrystals under supercritical water conditions. J. Mater. Chem. 17(41), 4426–4429 (2007)

    Article  CAS  Google Scholar 

  91. S. Rajadurai, J.J. Carberry, B. Li, C.B. Alcock, Catalytic oxidation of carbon monoxide over superconducting lanthanum strontium copper oxide (La2-xSrxCuO4-δ) systems between 373–523 K. J. Catal. 131, 582–589 (1991)

    Article  CAS  Google Scholar 

  92. R. Doshi, C.B. Alcock, N. Gunasekaran, J.J. Carberry, Carbon monoxide and methane oxidation properties of oxide solid solution catalysts. J. Catal. 140(2), 557–563 (1993)

    Article  CAS  Google Scholar 

  93. N. Gunasekaran, A. Meenakshisundaram, V. Srinivasan, Catalytic oxidation of carbon monoxide on potassium tetrafluoronickelate(II)-type perovskites – Lanthanum copper oxide (La2CuO4) and lanthanum nickel oxide (La2NiO4). Indian J. Chem. Sect. A 21A, 346–349, (1982)

    CAS  Google Scholar 

  94. H. Yasuda, Y. Fujiwara, N. Mizuno, M. Misono, Oxidation of carbon monoxide on LaMn1–xCuxO3 perovskite-type mixed oxides. J. Chem. Soc. Faraday Trans. 90, 1183–1189 (1994)

    Article  CAS  Google Scholar 

  95. S. Subramanian, C.S. Swamy, Catalytic decomposition of nitrous oxide on strontium-substituted La2CuO4 materials. Catal. Lett. 35, 361–372 (1995)

    Article  CAS  Google Scholar 

  96. H. Yasuda, T. Nitadori, N. Mizuno, M. Misono, Catalytic decomposition of nitrogen monoxide over valency-controlled La2CuO4-based mixed oxides. Bull. Chem. Soc. Jpn. 66, 3492–3502 (1993)

    Article  CAS  Google Scholar 

  97. C. Oliva, L. Forni, A.M. Ezerets, I.E. Mukovozov, A.V. Vishniakov, EPR characterization of (CeO2)1–y(La2CuO4)y oxide mixtures and their catalytic activity for NO reduction by CO. J. Chem. Soc. Faraday Trans. 94, 587–592 (1998)

    Article  CAS  Google Scholar 

  98. S.D. Peter, E. Garbowski, N. Guilhaume, V. Perrichon, M. Primet, Catalytic properties of La2CuO4 in the CO + NO reaction. Catal. Lett. 54, 79–84 (1998)

    Article  CAS  Google Scholar 

  99. A.A. Galkin, B.G. Kostyuk, V.V. Lunin, M. Poliakoff, Continuous reactions in supercritical water: A new route to La2CuO4 with a high surface area and enhanced oxygen mobility. Angew. Chem. Int. Ed. 39, 2738–2740 (2000)

    Article  CAS  Google Scholar 

  100. S.N. Torbin, M.N. Danchevskaya, L.F. Martynova, G.P. Muravieva, Role of intermediate solid phase in the process of magnesium and lanthanum aluminates formation in sub- and supercritical water. High Pressure Res. 20(1–6), 109–119 (2001)

    Article  Google Scholar 

  101. M. Emirdag-Eanes, M. Krawiec, J.W. Kolis, Hydrothermal synthesis and structural characterization of NaLnGeO4 (Ln = Ho, Er, Tb, Tm, Yb, Lu) family of lanthanide germinates. J. Chem. Crystallogr. 31(5), 281–285 (2001)

    Article  CAS  Google Scholar 

  102. J.B. Gadhe, R.B. Gupta, Hydrogen production by methanol reforming in supercritical water: Catalysis by in-situ-generated copper nanoparticles. Int. J. Hydrogen Energy 32(13), 2374–2381 (2007)

    Article  CAS  Google Scholar 

  103. K.J. Ziegler, R.C. Doty, K.P. Johnston, B.A. Korgel, Synthesis of organic monolayer-stabilized copper nanocrystals in supercritical water. J. Am. Chem. Soc. 123, 7797–7803 (2001)

    Article  CAS  Google Scholar 

  104. T. Mousavand, S. Takami, M. Umetsu, S. Ohara, T. Adschiri, Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles. J. Mater. Sci. 41(5), 1445–1448 (2006)

    Article  CAS  Google Scholar 

  105. T. Adschiri, Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles. Chem. Lett. 36(10), 1188–1193 (2007)

    Article  CAS  Google Scholar 

  106. D. Rangappa, S. Ohara, M. Umetsu, T. Naka, T. Adschiri, Synthesis, characterization and organic modification of copper manganese oxide nanocrystals under supercritical water. J. Supercrit. Fluids 44(3), 441–445 (2008)

    Article  CAS  Google Scholar 

  107. C.B. Xu, A.S. Teja, Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles. J. Supercrit. Fluids 44(1), 85–91 (2008)

    Article  CAS  Google Scholar 

  108. X. Wei, G. Xu, Z.H. Ren, C.X. Xu, G. Shen, G.R. Han, PVA-assisted hydrothermal synthesis of SrTiO3 nanoparticles with enhanced photocatalytic activity for degradation of RhB. J. Am. Ceram. Soc. 91(11), 3795–3799 (2008)

    Article  CAS  Google Scholar 

  109. J. Yamanaka, S. Mori, Y. Kaneko, Hydrothermal synthesis of vanadium-based layered compound with 1 nm basal spacing. Mater. Trans. 42(9), 1854–1857 (2001)

    Article  CAS  Google Scholar 

  110. P.M. Almond, T.E. Albrecht-Schmitt, Hydrothermal synthesis and crystal chemistry of the new strontium uranyl selenites, Sr[(UO2)3(SeO3)2O2]•4H2O and Sr[UO2(SeO3)2]. Am. Mineral. 89(7), 976–980 (2004)

    CAS  Google Scholar 

  111. J. Otsu, Y. Oshima, New approaches to the preparation of metal or metal oxide particles on the surface of porous materials using supercritical water: Development of supercritical water impregnation method. J. Supercrit. Fluids 33(1), 61–67 (2005)

    CAS  Google Scholar 

  112. O. Sawai, Y. Oshima, Mechanism of silver nano-particles formation on alpha-alumina using supercritical water. J. Mater. Sci. 43(7), 2293–2299 (2008)

    Article  CAS  Google Scholar 

  113. H. Reveron, C. Elissalde, C. Aymonier, O. Bidault, M. Maglione, F. Cansell, Supercritical fluid route for synthesizing crystalline barium strontium titanate nanoparticles. J. Nanosci. Nanotechnol. 5(10), 1741–1744 (2005)

    Article  CAS  Google Scholar 

  114. J. Lu, Y. Hakuta, H. Hayashi, T. Ohashi, Y. Hoshi, K. Sato, M. Nishioka, T. Inoue, S. Hamakawa, Continuous hydrothermal preparation of partially substituted perovskite oxide nanoparticles. Chem. Lett. 36(10), 1262–1263 (2007)

    Article  CAS  Google Scholar 

  115. J.F. Lu et al., Preparation of Ca0.8Sr0.2Ti1–xFexO3–δ (x = 0.1–0.3) nanoparticles using a flow supercritical reaction system. J. Supercrit. Fluids 46(1), 77–82 (2008)

    Article  CAS  Google Scholar 

  116. M. Takesue, A. Suino, Y. Hakuta, H. Hayashi, R.L. Smith, Formation mechanism and luminescence appearance of Mn-doped zinc silicate particles synthesized in supercritical water. J. Solid State Chem. 181(6), 1307–1313 (2008)

    Article  CAS  Google Scholar 

  117. M. Takesue, A. Suino, K. Shimoyama, Y. Hakuta, H. Hayashi, R.L. Smith, Formation of α- and β-phase Mn-doped zinc silicate in supercritical water and its luminescence properties at Si/(Zn+Mn) ratios from 0.25 to 1.25. J. Cryst. Growth 310(18), 4185–4189 (2008)

    Article  CAS  Google Scholar 

  118. M. Takesue, K. Shimoyama, S. Murakami, Y. Hakuta, H. Hayashi, R.L. Smith, Phase formation of Mn-doped zinc silicate in water at high-temperatures and high-pressures. J. Supercrit. Fluids 43(2), 214–221 (2007)

    Article  CAS  Google Scholar 

  119. J.Y. Chang, J.J. Chang, B. Lo, S.H. Tzing, Y.C. Ling, Silver nanoparticles spontaneous organize into nanowires and nanobanners in supercritical water. Chem. Phys. Lett. 379(3–4), 261–267 (2003)

    Article  CAS  Google Scholar 

  120. Z.Y. Sun, Z.M. Liu, B.X. Han, Y. Wang, J. Du, Z. Xie, G. Han, Fabrication of ruthenium-carbon nanotube nanocomposites in supercritical water. Adv. Mater. 17(7), 928–932 (2005)

    Article  CAS  Google Scholar 

  121. O. Sawai, Y. Oshima, Deposition of silver nano-particles on activated carbon using supercritical water. J. Supercrit. Fluids 47(2), 240–246 (2008)

    Article  CAS  Google Scholar 

  122. Z. Fang, H. Assaaoudi, H.B. Lin, X.M. Wang, I.S. Butler, J.A. Kozinski, Synthesis of nanocrystalline SnO2 in supercritical water. J. Nanopart. Res. 9(4), 683–687 (2007)

    Article  CAS  Google Scholar 

  123. Z. Fang, H. Assaaoudi, R.I.L. Guthrie, J.A. Kozinski, I.S. Butler, Continuous synthesis of tin and indium oxide nanoparticles in sub- and supercritical water. J. Am. Ceram. Soc. 90(8), 2367–2371 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Fang .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fang, Z. (2010). Metal Oxides Synthesis. In: Rapid Production of Micro- and Nano-particles Using Supercritical Water. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12987-2_3

Download citation

Publish with us

Policies and ethics