Skip to main content

Animal Anesthesia and Monitoring

  • Chapter

Abstract

Anesthesia is a pharmacologically induced reversible state of amnesia, analgesia, loss of consciousness, loss of skeletal muscle reflexes, and decreased stress response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Conzen PF, Vollmar B, Habazettl H, Frink EJ, Peter K, Messmer K (1992) Systemic and regional hemodynamics of isoflurane and sevoflurane in rats. Anesth Analg 74:79–88

    Article  PubMed  CAS  Google Scholar 

  • Danielsson BR, Danielson MK, Boo EL, Arvidsson T, Halldin MM (1997) Toxicity of bupivacaine and ropivacaine in relation to free plasma concentrations in pregnant rats: a comparative study. Pharmacol Toxicol 81:90–96

    Article  PubMed  CAS  Google Scholar 

  • Eger EI II, Johnson BH (1987) Rates of awakening from anesthesia with I-653, halothane, isoflurane, and sevoflurane: a test of the effect of anesthetic concentration and duration in rats. Anesth Analg 66:977–982

    PubMed  CAS  Google Scholar 

  • Groeben H, Meier S, Tankersley CG, Mitzner W, Brown RH (2004) Influence of volatile anaesthetics on hypercapnoeic ventilatory responses in mice with blunted respiratory drive. Br J Anaesth 92:697–703

    Article  PubMed  CAS  Google Scholar 

  • Hacker SO, White CE, Black IH (2005) A comparison of target-controlled infusion versus volatile inhalant anesthesia for heart rate, respiratory rate, and recovery time in a rat model. Contemp Top Lab Anim Sci 44:7–12

    PubMed  CAS  Google Scholar 

  • Heerdt PM, Gandhi CD, Dickstein ML (1998) Disparity of isoflurane effects on left and right ventricular afterload and hydraulic power generation in swine. Anesth Analg 87:511–521

    PubMed  CAS  Google Scholar 

  • Hettrick DA, Pagel PS, Warltier DC (1996) Desflurane, sevoflurane, and isoflurane impair canine left ventricular-arterial coupling and mechanical efficiency. Anesthesiology 85:403–413

    Article  PubMed  CAS  Google Scholar 

  • Kanaya N, Kawana S, Tsuchida H, Miyamoto A, Ohshika H, Namik A (1998) Comparative myocardial depression of sevoflurane, isoflurane, and halothane in cultured neonatal rat ventricular myocytes. Anesth Analg 87:1041–1047

    PubMed  CAS  Google Scholar 

  • Kissin I, Morgan PL, Smith LR (1983) Comparison of isoflurane and halothane safety margins in rats. Anesthesiology 58:556–561

    Article  PubMed  CAS  Google Scholar 

  • Komatsu H, Nogaya J, Kuratani N, Ueki M, Yokono S, Ogli K (1997) Psychomotor performance during initial stage of exposure to halothane, enflurane, isoflurane and sevoflurane in mice. Clin Exp Pharmacol Physiol 24:706–709

    Article  PubMed  CAS  Google Scholar 

  • Matchett GA, Allard MW, Martin RD, Zhang JH (2009) Neuroprotective effect of volatile anesthetic agents: molecular mechanisms. Neurol Res 31:128–134

    Article  PubMed  CAS  Google Scholar 

  • Pancaro C, Giovannoni S, Toscano A, Peduto VA (2005) Apnea during induction of anesthesia with sevoflurane is related to its mode of administration. Can J Anaesth 52:591–594

    Article  PubMed  Google Scholar 

  • Petrenko AB, Tsujita M, Kohno T, Sakimura K, Baba H (2007) Mutation of alpha1G T-type calcium channels in mice does not change anesthetic requirements for loss of the righting reflex and minimum alveolar concentration but delays the onset of anesthetic induction. Anesthesiology 106:1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Preckel B, Ebel D, Mullenheim J, Frassdorf J, Thamer V, Schlack W (2002) The direct myocardial effects of xenon in the dog heart in vivo. Anesth Analg 94:545–551

    Article  PubMed  CAS  Google Scholar 

  • Reutershan J, Chang D, Hayes JK, Ley K (2006) Protective effects of isoflurane pretreatment in endotoxin-induced lung injury. Anesthesiology 104:511–517

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R, Tritschler E, Hoetzel A, Loop T, Humar M, Halverscheid L, Geiger KK, Pannen BHJ (2007) Heme oxygenase-1 induction by the clinically used anesthetic isoflurane protects rat livers from ischemia/reperfusion injury. Ann Surg 245:931–942

    Article  PubMed  Google Scholar 

  • Stratmann G, Sall JW, Eger EI II, Laster MJ, Bell JS, May LDV, Eilers H, Krause M, Heusen FVD, Gonzalez HE (2009) Increasing the duration of isoflurane anesthesia decreases the minimum alveolar anesthetic concentration in 7-day-old but not in 60-day-old rats. Anesth Analg 109:801–806

    Article  PubMed  CAS  Google Scholar 

  • Weber NC, Preckel B, Schlack W (2005) The effect of anaesthetics on the myocardium–new insights into myocardial protection. Eur J Anaesthesiol 22:647–657

    Article  PubMed  CAS  Google Scholar 

Suggested Reading

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hein, M., Roehl, A.B., Tolba, R.H. (2011). Animal Anesthesia and Monitoring. In: Kiessling, F., Pichler, B. (eds) Small Animal Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12945-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12945-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12944-5

  • Online ISBN: 978-3-642-12945-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics