Skip to main content

The Apicoplast: An Ancient Algal Endosymbiont of Apicomplexa

  • Chapter
  • First Online:
Structures and Organelles in Pathogenic Protists

Part of the book series: Microbiology Monographs ((MICROMONO,volume 17))

  • 821 Accesses

Abstract

The discovery of a chloroplast in the Apicomplexa came as a surprise as these are nonphotosynthetic parasites that historically had been the domain of zoologists. This organelle, the apicoplast is essential for parasite survival and its metabolism is intensively pursued as the source of new targets for antiparasitic drugs, in particular new antimalarials. The apicoplast has a remarkable evolutionary history, and this history is reflected in its complex structure and cell biology. A cyanobacterium and two eukaryotes have contributed to the genesis of this organelle and their contributions can still be traced today. This chapter sets out by briefly summarizing the studies that led to the discovery of the apicoplast followed by an overview of our most current knowledge of the molecular mechanisms of apicoplast protein import, apicoplast division and replication and apicoplast metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal S, van Dooren GG, Beatty WL, Striepen B (2009) Genetic evidence that an endosymbiont-derived ERAD system functions in import of apicoplast proteins. J Biol Chem 284(48):33683–33691

    Article  PubMed  CAS  Google Scholar 

  • Ahmed A, Sharma YD (2008) Ribozyme cleavage of Plasmodium falciparum gyrase A gene transcript affects the parasite growth. Parasitol Res 103(4):751–763

    Article  PubMed  Google Scholar 

  • Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94(20):10600–10605

    Article  PubMed  CAS  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693):79–86

    Article  PubMed  CAS  Google Scholar 

  • Bahl A, Brunk B, Crabtree J, Fraunholz MJ, Gajria B, Grant GR, Ginsburg H, Gupta D, Kissinger JC, Labo P, Li L, Mailman MD, Milgram AJ, Pearson DS, Roos DS, Schug J, Stoeckert CJ Jr, Whetzel P (2003) PlasmoDB: the Plasmodium genome resource A database integrating experimental and computational data. Nucleic Acids Res 31(1):212–215

    Article  PubMed  CAS  Google Scholar 

  • Beckers CJ, Roos DS, Donald RG, Luft BJ, Schwab JC, Cao Y, Joiner KA (1995) Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii. Implications for the target of macrolide antibiotics. J Clin Invest 95(1):367–376

    Article  PubMed  CAS  Google Scholar 

  • Bonday ZQ, Dhanasekaran S, Rangarajan PN, Padmanaban G (2000) Import of host delta-aminolevulinate dehydratase into the malarial parasite: identification of a new drug target. Nat Med 6(8):898–903

    Article  PubMed  CAS  Google Scholar 

  • Bonday ZQ, Taketani S, Gupta PD, Padmanaban G (1997) Heme biosynthesis by the malarial parasite Import of delta-aminolevulinate dehydrase from the host red cell. J Biol Chem 272(35):21839–21846

    Article  PubMed  CAS  Google Scholar 

  • Borrmann S, Lundgren I, Oyakhirome S, Impouma B, Matsiegui PB, Adegnika AA, Issifou S, Kun JF, Hutchinson D, Wiesner J, Jomaa H, Kremsner PG (2006) Fosmidomycin plus clindamycin for treatment of pediatric patients aged 1 to 14 years with Plasmodium falciparum malaria. Antimicrob Agents Chemother 50(8):2713–2718

    Article  PubMed  CAS  Google Scholar 

  • Borst P, Overdulve JP, Weijers PJ, Fase-Fowler F, Van den Berg M (1984) DNA circles with cruciforms from Isospora (Toxoplasma) gondii. Biochim Biophys Acta 781(1–2):100–111

    PubMed  CAS  Google Scholar 

  • Brooks CF, Johnsen H, van Dooren GG, Muthalagi Liu SS M, Bohne W, Fischer K, Striepen B (2010) The phosphate translocator is the source of carbon and energy for the Toxoplasma apicoplast and essential for parasite survival. Cell Host & Microbe 7:63–73

    Article  CAS  Google Scholar 

  • Bruce BD (2001) The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. Biochim Biophys Acta 1541(1–2):2–21

    Article  PubMed  CAS  Google Scholar 

  • Cabantous S, Waldo GS (2006) In vivo and in vitro protein solubility assays using split GFP. Nat Methods 3(10):845–854

    Article  PubMed  CAS  Google Scholar 

  • Camps M, Arrizabalaga G, Boothroyd J (2002) An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii. Mol Microbiol 43(5):1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Cassera MB, Gozzo FC, D'Alexandri FL, Merino EF, del Portillo HA, Peres VJ, Almeida IC, Eberlin MN, Wunderlich G, Wiesner J, Jomaa H, Kimura EA, Katzin AM (2004) The methylerythritol phosphate pathway is functionally active in all intraerythrocytic stages of Plasmodium falciparum. J Biol Chem 279(50):51749–51759

    Article  PubMed  CAS  Google Scholar 

  • Castaneda-Garcia A, Rodriguez-Rojas A, Guelfo JR, Blazquez J (2009) Glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa. J Bacteriol 191(22):6968–6974

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46(4):347–366

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5(4):174–182

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52(Pt 2):297–354

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2004) Only six kingdoms of life. Proc Biol Sci 271(1545):1251–1262

    Article  PubMed  CAS  Google Scholar 

  • Claros MG, Brunak S, von Heijne G (1997) Prediction of N-terminal protein sorting signals. Curr Opin Struct Biol 7(3):394–398

    Article  PubMed  CAS  Google Scholar 

  • Clastre M, Goubard A, Prel A, Mincheva Z, Viaud-Massuart MC, Bout D, Rideau M, Velge-Roussel F, Laurent F (2007) The methylerythritol phosphate pathway for isoprenoid biosynthesis in coccidia: presence and sensitivity to fosmidomycin. Exp Parasitol 116(4):375–384

    Article  PubMed  CAS  Google Scholar 

  • Clough B, Strath M, Preiser P, Denny P, Wilson IR (1997) Thiostrepton binds to malarial plastid rRNA. FEBS Lett 406(1–2):123–125

    Article  PubMed  CAS  Google Scholar 

  • Coatney GR, Greenberg J (1952) The use of antibiotics in the treatment of malaria. Ann N Y Acad Sci 55(6):1075–1081

    Article  PubMed  CAS  Google Scholar 

  • Colletti KS, Tattersall EA, Pyke KA, Froelich JE, Stokes KD, Osteryoung KW (2000) A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus. Curr Biol 10(9):507–516

    Article  PubMed  CAS  Google Scholar 

  • Coppens I, Sinai AP, Joiner KA (2000) Toxoplasma gondii exploits host low-density lipoprotein receptor-mediated endocytosis for cholesterol acquisition. J Cell Biol 149(1):167–180

    Article  PubMed  CAS  Google Scholar 

  • Coppin A, Varre JS, Lienard L, Dauvillee D, Guerardel Y, Soyer-Gobillard MO, Buleon A, Ball S, Tomavo S (2005) Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. J Mol Evol 60(2):257–267

    Article  PubMed  CAS  Google Scholar 

  • Crawford MJ, Thomsen-Zieger N, Ray M, Schachtner J, Roos DS, Seeber F (2006) Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. EMBO J 25(13):3214–3222

    Article  PubMed  CAS  Google Scholar 

  • Creasey A, Mendis K, Carlton J, Williamson D, Wilson I, Carter R (1994) Maternal inheritance of extrachromosomal DNA in malaria parasites. Mol Biochem Parasitol 65(1):95–98

    Article  PubMed  CAS  Google Scholar 

  • Cronan JE, Zhao X, Jiang Y (2005) Function, attachment and synthesis of lipoic acid in Escherichia coli. Adv Microb Physiol 50:103–146

    Article  PubMed  CAS  Google Scholar 

  • Dahl EL, Shock JL, Shenai BR, Gut J, DeRisi JL, Rosenthal PJ (2006) Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 50(9):3124–3131

    Article  PubMed  CAS  Google Scholar 

  • Delwiche CF (1999) Tracing the Thread of Plastid Diversity through the Tapestry of Life. Am Nat 154:S164–S177

    Article  PubMed  Google Scholar 

  • Dar MA, Sharma A, Mondal N, Dhar SK (2007) Molecular cloning of apicoplast-targeted Plasmodium falciparum DNA gyrase genes: unique intrinsic ATPase activity and ATP-independent dimerization of PfGyrB subunit. Eukaryot Cell 6(3):398–412

    Article  PubMed  CAS  Google Scholar 

  • DeRocher A, Gilbert B, Feagin JE, Parsons M (2005) Dissection of brefeldin A-sensitive and -insensitive steps in apicoplast protein targeting. J Cell Sci 118(Pt 3):565–574

    Article  PubMed  CAS  Google Scholar 

  • DeRocher A, Hagen CB, Froehlich JE, Feagin JE, Parsons M (2000) Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system. J Cell Sci 113(Pt 22):3969–3977

    PubMed  CAS  Google Scholar 

  • DeRocher AE, Coppens I, Karnataki A, Gilbert LA, Rome ME, Feagin JE, Bradley PJ, Parsons M (2008) A thioredoxin family protein of the apicoplast periphery identifies abundant candidate transport vesicles in Toxoplasma gondii. Eukaryot Cell 7(9):1518–1529

    Article  PubMed  CAS  Google Scholar 

  • Dharia NV, Sidhu AB, Cassera MB, Westenberger SJ, Bopp SE, Eastman RT, Plouffe D, Batalov S, Park DJ, Volkman SK, Wirth DF, Zhou Y, Fidock DA, Winzeler EA (2009) Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum. Genome Biol 10(2):R21

    Article  PubMed  CAS  Google Scholar 

  • Dore E, Frontali C, Forte T, Fratarcangeli S (1983) Further studies and electron microscopic characterization of Plasmodium berghei DNA. Mol Biochem Parasitol 8(4):339–352

    Article  PubMed  CAS  Google Scholar 

  • Durnford DG, Gray MW (2006) Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot Cell 5(12):2079–2091

    Article  PubMed  CAS  Google Scholar 

  • Eicks M, Maurino V, Knappe S, Flugge UI, Fischer K (2002) The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants. Plant Physiol 128(2):512–522

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61(12):1401–1426

    Article  PubMed  CAS  Google Scholar 

  • Fast NM, Kissinger JC, Roos DS, Keeling PJ (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18(3):418–426

    Article  PubMed  CAS  Google Scholar 

  • Feagin JE, Parsons M (2007) The apicoplast and mitochondrion of Toxoplasma gondii. In: Weiss LM and Kim K (Eds) Toxoplasma gondii the model apicomplexan: perspectives and methods. Elsevier, London, pp. 207–244

    Google Scholar 

  • Feagin JE, Werner E, Gardner MJ, Williamson DH, Wilson RJ (1992) Homologies between the contiguous and fragmented rRNAs of the two Plasmodium falciparum extrachromosomal DNAs are limited to core sequences. Nucleic Acids Res 20(4):879–887

    Article  PubMed  CAS  Google Scholar 

  • Ferguson DJ, Henriquez FL, Kirisits MJ, Muench SP, Prigge ST, Rice DW, Roberts CW, McLeod RL (2005) Maternal inheritance and stage-specific variation of the apicoplast in Toxoplasma gondii during development in the intermediate and definitive host. Eukaryot Cell 4(4):814–826

    Article  PubMed  CAS  Google Scholar 

  • Fichera ME, Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390(6658):407–409

    Article  PubMed  CAS  Google Scholar 

  • Fischer K, Kammerer B, Gutensohn M, Arbinger B, Weber A, Hausler RE, Flugge UI (1997) A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell 9(3):453–462

    PubMed  CAS  Google Scholar 

  • Fleige T, Fischer K, Ferguson DJ, Gross U, Bohne W (2007) Carbohydrate metabolism in the Toxoplasma gondii apicoplast: localization of three glycolytic isoenzymes, the single pyruvate dehydrogenase complex, and a plastid phosphate translocator. Eukaryot Cell 6(6):984–996

    Article  PubMed  CAS  Google Scholar 

  • Flügge UI, Häusler RE, Ludewig F, Fischer K (2003) Functional genomics of phosphate antiport systems. Physiol Plant 118:475–482

    Article  Google Scholar 

  • Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, Cowman AF, McFadden GI (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299(5607):705–708

    Article  PubMed  CAS  Google Scholar 

  • Foth BJ, Stimmler LM, Handman E, Crabb BS, Hodder AN, McFadden GI (2005) The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol Microbiol 55(1):39–53

    Article  PubMed  CAS  Google Scholar 

  • Fraunholz MJ, Moerschel E, Maier UG (1998) The chloroplast division protein FtsZ is encoded by a nucleomorph gene in cryptomonads. Mol Gen Genet 260(2–3):207–211

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Bates PA, Ling IT, Moore DJ, McCready S, Gunasekera MB, Wilson RJ, Williamson DH (1988) Mitochondrial DNA of the human malarial parasite Plasmodium falciparum. Mol Biochem Parasitol 31(1):11–17

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Feagin JE, Moore DJ, Rangachari K, Williamson DH, Wilson RJ (1993) Sequence and organization of large subunit rRNA genes from the extrachromosomal 35 kb circular DNA of the malaria parasite Plasmodium falciparum. Nucleic Acids Res 21(5):1067–1071

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Feagin JE, Moore DJ, Spencer DF, Gray MW, Williamson DH, Wilson RJ (1991a) Organisation and expression of small subunit ribosomal RNA genes encoded by a 35-kilobase circular DNA in Plasmodium falciparum. Mol Biochem Parasitol 48(1):77–88

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Goldman N, Barnett P, Moore PW, Rangachari K, Strath M, Whyte A, Williamson DH, Wilson RJ (1994a) Phylogenetic analysis of the rpoB gene from the plastid-like DNA of Plasmodium falciparum. Mol Biochem Parasitol 66(2):221–231

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906):498–511

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Preiser P, Rangachari K, Moore D, Feagin JE, Williamson DH, Wilson RJ (1994b) Nine duplicated tRNA genes on the plastid-like DNA of the malaria parasite Plasmodium falciparum. Gene 144(2):307–308

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Williamson DH, Wilson RJ (1991b) A circular DNA in malaria parasites encodes an RNA polymerase like that of prokaryotes and chloroplasts. Mol Biochem Parasitol 44(1):115–123

    Article  PubMed  CAS  Google Scholar 

  • Gibbs SP (1979) The route of entry of cytoplasmically synthesized proteins into chloroplasts of algae possessing chloroplast ER. J Cell Sci 35:253–266

    PubMed  CAS  Google Scholar 

  • Glynn JM, Froehlich JE, Osteryoung KW (2008) Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space. Plant Cell 20(9):2460–2470

    Article  PubMed  CAS  Google Scholar 

  • Goodman CD, McFadden GI (2007) Fatty acid biosynthesis as a drug target in apicomplexan parasites. Curr Drug Targets 8(1):15–30

    Article  PubMed  CAS  Google Scholar 

  • Goodman CD, Su V, McFadden GI (2007) The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 152(2):181–191

    Article  PubMed  CAS  Google Scholar 

  • Gould SB, Sommer MS, Hadfi K, Zauner S, Kroth PG, Maier UG (2006a) Protein targeting into the complex plastid of cryptophytes. J Mol Evol 62(6):674–681

    Article  PubMed  CAS  Google Scholar 

  • Gould SB, Sommer MS, Kroth PG, Gile GH, Keeling PJ, Maier UG (2006b) Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Mol Biol Evol 23(12):2413–2422

    Article  PubMed  CAS  Google Scholar 

  • Gould SB, Tham WH, Cowman AF, McFadden GI, Waller RF (2008) Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. Mol Biol Evol 25(6):1219–1230

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (1993) Origin and evolution of organelle genomes. Curr Opin Genet Dev 3(6):884–890

    Article  PubMed  CAS  Google Scholar 

  • Grossman A, Manodori A, Snyder D (1990) Light-harvesting proteins of diatoms: their relationship to the chlorophyll a/b binding proteins of higher plants and their mode of transport into plastids. Mol Gen Genet 224(1):91–100

    Article  PubMed  CAS  Google Scholar 

  • Gubbels MJ, Vaishnava S, Boot N, Dubremetz JF, Striepen B (2006) A MORN-repeat protein is a dynamic component of the Toxoplasma gondii cell division apparatus. J Cell Sci 119:2236–2245

    Article  PubMed  CAS  Google Scholar 

  • Gunther S, Wallace L, Patzewitz EM, McMillan PJ, Storm J, Wrenger C, Bissett R, Smith TK, Muller S (2007) Apicoplast lipoic acid protein ligase B is not essential for Plasmodium falciparum. PLoS Pathog 3(12):e189

    Article  PubMed  CAS  Google Scholar 

  • Harb OS, Chatterjee B, Fraunholz MJ, Crawford MJ, Nishi M, Roos DS (2004) Multiple functionally redundant signals mediate targeting to the apicoplast in the apicomplexan parasite Toxoplasma gondii. Eukaryot Cell 3(3):663–674

    Article  PubMed  CAS  Google Scholar 

  • He CY, Striepen B, Pletcher CH, Murray JM, Roos DS (2001) Targeting and processing of nuclear-encoded apicoplast proteins in plastid segregation mutants of Toxoplasma gondii. J Biol Chem 276(30):28436–28442

    Article  PubMed  CAS  Google Scholar 

  • Heinemann IU, Jahn M, Jahn D (2008) The biochemistry of heme biosynthesis. Arch Biochem Biophys 474(2):238–251

    Article  PubMed  CAS  Google Scholar 

  • Hempel F, Bullmann L, Lau J, Zauner S, Maier UG (2009) ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol Biol Evol 26(8):1781–1790

    Article  PubMed  CAS  Google Scholar 

  • Hormann F, Soll J, Bolter B (2007) The chloroplast protein import machinery: a review. Methods Mol Biol 390:179–193

    Article  PubMed  CAS  Google Scholar 

  • Howe CJ, Purton S (2007) The little genome of apicomplexan plastids: its raison d'etre and a possible explanation for the 'delayed death' phenomenon. Protist 158(2):121–133

    Article  PubMed  CAS  Google Scholar 

  • Itoh R, Fujiwara M, Nagata N, Yoshida S (2001) A chloroplast protein homologous to the eubacterial topological specificity factor minE plays a role in chloroplast division. Plant Physiol 127(4):1644–1655

    Article  PubMed  CAS  Google Scholar 

  • Jarvis P (2008) Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol 179(2):257–285

    Article  PubMed  CAS  Google Scholar 

  • Jelenska J, Crawford MJ, Harb OS, Zuther E, Haselkorn R, Roos DS, Gornicki P (2001) Subcellular localization of acetyl-CoA carboxylase in the apicomplexan parasite Toxoplasma gondii. Proc Natl Acad Sci USA 98(5):2723–2728

    Article  PubMed  CAS  Google Scholar 

  • Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D, Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285(5433):1573–1576

    Article  PubMed  CAS  Google Scholar 

  • Kalanon M, Tonkin CJ, McFadden GI (2009) Characterization of two putative protein translocation components in the apicoplast of Plasmodium falciparum. Eukaryot Cell 8(8):1146–1154

    Article  PubMed  CAS  Google Scholar 

  • Kammerer B, Fischer K, Hilpert B, Schubert S, Gutensohn M, Weber A, Flugge UI (1998) Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell 10(1):105–117

    PubMed  CAS  Google Scholar 

  • Karnataki A, Derocher A, Coppens I, Nash C, Feagin JE, Parsons M (2007a) Cell cycle-regulated vesicular trafficking of Toxoplasma APT1, a protein localized to multiple apicoplast membranes. Mol Microbiol 63(6):1653–1668

    Article  PubMed  CAS  Google Scholar 

  • Karnataki A, Derocher AE, Coppens I, Feagin JE, Parsons M (2007b) A membrane protease is targeted to the relict plastid of toxoplasma via an internal signal sequence. Traffic 8(11):1543–1553

    Article  PubMed  CAS  Google Scholar 

  • Karnataki A, DeRocher AE, Feagin JE, Parsons M (2009) Sequential processing of the Toxoplasma apicoplast membrane protein FtsH1 in topologically distinct domains during intracellular trafficking. Mol Biochem Parasitol 166(2):126–133

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2009) Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 56(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Kilejian A (1975) Circular mitochondrial DNA from the avian malarial parasite Plasmodium lophurae. Biochim Biophys Acta 390(3):276–284

    Article  PubMed  CAS  Google Scholar 

  • Kilian O, Kroth PG (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41(2):175–183

    Article  PubMed  CAS  Google Scholar 

  • Knappe S, Flugge UI, Fischer K (2003) Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. Plant Physiol 131(3):1178–1190

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Takahara M, Miyagishima SY, Kuroiwa H, Sasaki N, Ohta N, Matsuzaki M, Kuroiwa T (2002) Detection and localization of a chloroplast-encoded HU-like protein that organizes chloroplast nucleoids. Plant Cell 14(7):1579–1589

    Article  PubMed  CAS  Google Scholar 

  • Kohler S (2005) Multi-membrane-bound structures of Apicomplexa: I. the architecture of the Toxoplasma gondii apicoplast. Parasitol Res 96(4):258–272

    Article  PubMed  Google Scholar 

  • Kohler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJ, Palmer JD, Roos DS (1997) A plastid of probable green algal origin in Apicomplexan parasites. Science 275(5305):1485–1489

    Article  PubMed  CAS  Google Scholar 

  • Kouranov A, Chen X, Fuks B, Schnell DJ (1998) Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J Cell Biol 143(4):991–1002

    Article  PubMed  CAS  Google Scholar 

  • Kroth P, Strotmann H (1999) Diatom plastids: secondary endocytobiosis, plastid genome and protein import. Physiol Plant 107:136–141

    Article  CAS  Google Scholar 

  • Lane CE, Archibald JM (2008) The eukaryotic tree of life: endosymbiosis takes its TOL. Trends Ecol Evol 23(5):268–275

    Article  PubMed  Google Scholar 

  • Legesse-Miller A, Massol RH, Kirchhausen T (2003) Constriction and Dnm1p recruitment are distinct processes in mitochondrial fission. Mol Biol Cell 14(5):1953–1963

    Article  PubMed  CAS  Google Scholar 

  • Lizundia R, Werling D, Langsley G, Ralph SA (2009) Theileria apicoplast as a target for chemotherapy. Antimicrob Agents Chemother 53(3):1213–1217

    Article  PubMed  CAS  Google Scholar 

  • Louis MW, Kami K (eds) (2007) The model apicomplexan: perspectives and methods, vols. 1, 9. Elsevier, London, pp 207–244

    Google Scholar 

  • Maeda T, Saito T, Harb OS, Roos DS, Takeo S, Suzuki H, Tsuboi T, Takeuchi T, Asai T (2009) Pyruvate kinase type-II isozyme in Plasmodium falciparum localizes to the apicoplast. Parasitol Int 58(1):101–105

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki M, Kikuchi T, Kita K, Kojima S, Kuroiwa T (2001) Large amounts of apicoplast nucleoid DNA and its segregation in Toxoplasma gondii. Protoplasma 218(3–4):180–191

    Article  PubMed  CAS  Google Scholar 

  • Mazumdar J, Striepen B (2007) Make it or take it fatty acid metabolism of apicomplexan parasites. Eukaryot Cell 6:1727–1735

    Article  PubMed  CAS  Google Scholar 

  • Mazumdar J, Wilson E, Masarek K, Hunter C, Striepen B (2006) Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc Natl Acad Sci USA 103:13192–13197

    Article  PubMed  CAS  Google Scholar 

  • McConkey GA, Rogers MJ, McCutchan TF (1997) Inhibition of Plasmodium falciparum protein synthesis Targeting the plastid-like organelle with thiostrepton. J Biol Chem 272(4):2046–2049

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI, Reith ME, Munholland J, Lang-Unnasch N (1996) Plastid in human parasites. Nature 381(6582):482

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14(13):R514–R516

    Article  PubMed  CAS  Google Scholar 

  • McLeod R, Muench SP, Rafferty JB, Kyle DE, Mui EJ, Kirisits MJ, Mack DG, Roberts CW, Samuel BU, Lyons RE, Dorris M, Milhous WK, Rice DW (2001) Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int J Parasitol 31(2):109–113

    Article  PubMed  CAS  Google Scholar 

  • Miyagishima SY (2005) Origin and evolution of the chloroplast division machinery. J Plant Res 118(5):295–306

    Article  PubMed  Google Scholar 

  • Moore CE, Archibald JM (2009) Nucleomorph genomes. Annu Rev Genet 43:251–254

    Article  PubMed  CAS  Google Scholar 

  • Moore RB, Obornik M, Janouskovec J, Chrudimsky T, Vancova M, Green DH, Wright SW, Davies NW, Bolch CJ, Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451(7181):959–963

    Article  PubMed  CAS  Google Scholar 

  • Moreno SN, Li ZH (2008) Anti-infectives targeting the isoprenoid pathway of Toxoplasma gondii. Expert Opin Ther Targets 12(3):253–263

    Article  PubMed  CAS  Google Scholar 

  • Mullin KA, Lim L, Ralph SA, Spurck TP, Handman E, McFadden GI (2006) Membrane transporters in the relict plastid of malaria parasites. Proc Natl Acad Sci USA 103:9572–9577

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj VA, Arumugam R, Chandra NR, Prasad D, Rangarajan PN, Padmanaban G (2009a) Localisation of Plasmodium falciparum uroporphyrinogen III decarboxylase of the heme-biosynthetic pathway in the apicoplast and characterisation of its catalytic properties. Int J Parasitol 39(5):559–568

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj VA, Prasad D, Rangarajan PN, Padmanaban G (2009b) Mitochondrial localization of functional ferrochelatase from Plasmodium falciparum. Mol Biochem Parasitol 168(1):109–112

    Article  PubMed  CAS  Google Scholar 

  • Nassoury N, Cappadocia M, Morse D (2003) Plastid ultrastructure defines the protein import pathway in dinoflagellates. J Cell Sci 116(Pt 14):2867–2874

    Article  PubMed  CAS  Google Scholar 

  • Obornik M, Van de Peer Y, Hypsa V, Frickey T, Slapeta JR, Meyer A, Lukes J (2002) Phylogenetic analyses suggest lateral gene transfer from the mitochondrion to the apicoplast. Gene 285(1–2):109–118

    Article  PubMed  CAS  Google Scholar 

  • Osteryoung KW, Nunnari J (2003) The division of endosymbiotic organelles. Science 302(5651):1698–1704

    Article  PubMed  CAS  Google Scholar 

  • Park S, Isaacson R, Kim HT, Silver PA, Wagner G (2005) Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites. Structure13(7):995–1005

    Article  PubMed  CAS  Google Scholar 

  • Patron NJ, Waller RF, Archibald JM, Keeling PJ (2005) Complex protein targeting to dinoflagellate plastids. J Mol Biol 348(4):1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Preiser P, Williamson DH, Wilson RJ (1995) tRNA genes transcribed from the plastid-like DNA of Plasmodium falciparum. Nucleic Acids Res 23(21):4329–4336

    Article  PubMed  CAS  Google Scholar 

  • Raghu Ram EV, Kumar A, Biswas S, Chaubey S, Siddiqi MI, Habib S (2007) Nuclear gyrB encodes a functional subunit of the Plasmodium falciparum gyrase that is involved in apicoplast DNA replication. Mol Biochem Parasitol 154(1):30–39

    Article  PubMed  CAS  Google Scholar 

  • Ralph SA, Foth BJ, Hall N, McFadden GI (2004a) Evolutionary pressures on apicoplast transit peptides. Mol Biol Evol 21(12):2183–2194

    Article  PubMed  CAS  Google Scholar 

  • Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden GI (2004b) Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2(3):203–216

    Article  PubMed  CAS  Google Scholar 

  • Rao A, Yeleswarapu SJ, Srinivasan R, Bulusu G (2008) Localization of heme biosynthesis pathway enzymes in Plasmodium falciparum. Indian J Biochem Biophys 45(6):365–373

    PubMed  CAS  Google Scholar 

  • Rohdich F, Kis K, Bacher A, Eisenreich W (2001) The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates. Curr Opin Chem Biol 5(5):535–540

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517–524

    PubMed  CAS  Google Scholar 

  • Rohrich RC, Englert N, Troschke K, Reichenberg A, Hintz M, Seeber F, Balconi E, Aliverti A, Zanetti G, Kohler U, Pfeiffer M, Beck E, Jomaa H, Wiesner J (2005) Reconstitution of an apicoplast-localised electron transfer pathway involved in the isoprenoid biosynthesis of Plasmodium falciparum. FEBS Lett 579(28):6433–6438

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Clough B, Coates L, Wilson RJ (2004) Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 155(1):117–125

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Wilson RJ (2003) Proteobacteria-like ferrochelatase in the malaria parasite. Curr Genet 42(5):292–300

    PubMed  CAS  Google Scholar 

  • Seow F, Sato S, Janssen CS, Riehle MO, Mukhopadhyay A, Phillips RS, Wilson RJ, Barrett MP (2005) The plastidic DNA replication enzyme complex of Plasmodium falciparum. Mol Biochem Parasitol 141(2):145–153

    Article  PubMed  CAS  Google Scholar 

  • Siddall ME (1992) Hohlzylinders. Parasitol Today 8(3):90–91

    Article  PubMed  CAS  Google Scholar 

  • Sidhu AB, Sun Q, Nkrumah LJ, Dunne MW, Sacchettini JC, Fidock DA (2007) In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin. J Biol Chem 282(4):2494–2504

    Article  PubMed  CAS  Google Scholar 

  • Singh D, Kumar A, Raghu Ram EV, Habib S (2005) Multiple replication origins within the inverted repeat region of the Plasmodium falciparum apicoplast genome are differentially activated. Mol Biochem Parasitol 139(1):99–106

    Article  PubMed  CAS  Google Scholar 

  • Sivakumar T, Aboulaila MRA, Khukhuu A, Iseki H, Alhassan A, Yokoyama N, Igarashi I (2008) In vitro inhibitory effect of fosmidomycin on the asexual growth of Babesia bovis and Babesia bigemina. J Protozool Res 18:71–78

    CAS  Google Scholar 

  • Smith S, Witkowski A, Joshi AK (2003) Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 42(4):289–317

    Article  PubMed  CAS  Google Scholar 

  • Sommer MS, Gould SB, Lehmann P, Gruber A, Przyborski JM, Maier UG (2007) Der1-mediated preprotein import into the periplastid compartment of chromalveolates? Mol Biol Evol 24:918–928

    Article  PubMed  CAS  Google Scholar 

  • Spork S, Hiss JA, Mandel K, Sommer M, Kooij TW, Chu T, Schneider G, Maier UG, Przyborski JM (2009) An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot Cell 8(8):1134–1145

    Article  PubMed  CAS  Google Scholar 

  • Stanway RR, Witt T, Zobiak B, Aepfelbacher M, Heussler VT (2009) GFP-targeting allows visualization of the apicoplast throughout the life cycle of live malaria parasites. Biol Cell 101(7):415–430

    Article  PubMed  CAS  Google Scholar 

  • Stokes KD, McAndrew RS, Figueroa R, Vitha S, Osteryoung KW (2000) Chloroplast division and morphology are differentially affected by overexpression of FtsZ1 and FtsZ2 genes in Arabidopsis. Plant Physiol 124(4):1668–1677

    Article  PubMed  CAS  Google Scholar 

  • Striepen B, Crawford MJ, Shaw MK, Tilney LG, Seeber F, Roos DS (2000) The plastid of Toxoplasma gondii is divided by association with the centrosomes. J Cell Biol 151(7):1423–1434

    Article  PubMed  CAS  Google Scholar 

  • Striepen B, Jordan CN, Reiff S, van Dooren GG (2007) Building the perfect parasite: cell division in apicomplexa. PLoS Pathog 3(6):e78

    Article  PubMed  CAS  Google Scholar 

  • Sulli C, Schwartzbach SD (1995) The polyprotein precursor to the Euglena light-harvesting chlorophyll a/b-binding protein is transported to the Golgi apparatus prior to chloroplast import and polyprotein processing. J Biol Chem 270(22):13084–13090

    Article  PubMed  CAS  Google Scholar 

  • Sulli C, Schwartzbach SD (1996) A soluble protein is imported into Euglena chloroplasts as a membrane- bound precursor. Plant Cell 8(1):43–53

    PubMed  CAS  Google Scholar 

  • Surolia N, Padmanaban G (1992) de novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem Biophys Res Commun 187(2):744–750

    Article  PubMed  CAS  Google Scholar 

  • Surolia N, Surolia A (2001) Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat Med 7(2):167–173

    Article  PubMed  CAS  Google Scholar 

  • Tabbara KF, O'Connor GR (1980) Treatment of ocular toxoplasmosis with clindamycin and sulfadiazine. Ophthalmology 87(2):129–134

    PubMed  CAS  Google Scholar 

  • Thomsen-Zieger N, Schachtner J, Seeber F (2003) Apicomplexan parasites contain a single lipoic acid synthase located in the plastid. FEBS Lett 547(1–3):80–86

    Article  PubMed  CAS  Google Scholar 

  • Tomova C, Geerts WJ, Muller-Reichert T, Entzeroth R, Humbel BM (2006) New comprehension of the apicoplast of sarcocystis by transmission electron tomography. Biol Cell 98(9):535–545

    Article  PubMed  CAS  Google Scholar 

  • Tomova C, Humbel BM, Geerts WJ, Entzeroth R, Holthuis JC, Verkleij AJ (2009) Membrane contact sites between apicoplast and ER in Toxoplasma gondii revealed by electron tomography. Traffic 10(10):1471–1480

    Article  PubMed  CAS  Google Scholar 

  • Tonkin CJ, Kalanon M, McFadden GI (2008) Protein targeting to the malaria parasite plastid. Traffic 9(2):166–175

    PubMed  CAS  Google Scholar 

  • Tonkin CJ, Roos DS, McFadden GI (2006a) N-terminal positively charged amino acids, but not their exact position, are important for apicoplast transit peptide fidelity in Toxoplasma gondii. Mol Biochem Parasitol 150(2):192–200

    Article  PubMed  CAS  Google Scholar 

  • Tonkin CJ, Struck NS, Mullin KA, Stimmler LM, McFadden GI (2006b) Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites. Mol Microbiol 61(3):614–630

    Article  PubMed  CAS  Google Scholar 

  • Tranel PJ, Froehlich J, Goyal A, Keegstra K (1995) A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway. EMBO J 14(11):2436–2446

    PubMed  CAS  Google Scholar 

  • Tranel PJ, Keegstra K (1996) A novel, bipartite transit peptide targets OEP75 to the outer membrane of the chloroplastic envelope. Plant Cell 8(11):2093–2104

    PubMed  CAS  Google Scholar 

  • Vaidya AB, Arasu P (1987) Tandemly arranged gene clusters of malarial parasites that are highly conserved and transcribed. Mol Biochem Parasitol 22(2–3):249–257

    Article  PubMed  CAS  Google Scholar 

  • Vaishnava S, Morrison DP, Gaji RY, Murray JM, Entzeroth R, Howe DK, Striepen B (2005) Plastid segregation and cell division in the apicomplexan parasite Sarcocystis neurona. J Cell Sci 118(Pt 15):3397–3407

    Article  PubMed  CAS  Google Scholar 

  • Vaishnava S, Striepen B (2006) The cell biology of secondary endosymbiosis–how parasites build, divide and segregate the apicoplast. Mol Microbiol 61(6):1380–1387

    Article  PubMed  CAS  Google Scholar 

  • van Dooren GG, Marti M, Tonkin CJ, Stimmler LM, Cowman AF, McFadden GI (2005) Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Mol Microbiol 57(2):405–419

    Article  PubMed  CAS  Google Scholar 

  • van Dooren GG, Reiff SB, Tomova C, Meissner M, Humbel BM, Striepen B (2009) A novel dynamin-related protein has been recruited for apicoplast fission in Toxoplasma gondii. Curr Biol 19(4):267–276

    Article  PubMed  CAS  Google Scholar 

  • van Dooren GG, Su V, D'Ombrain MC, McFadden GI (2002) Processing of an apicoplast leader sequence in Plasmodium falciparum and the identification of a putative leader cleavage enzyme. J Biol Chem 277(26):23612–23619

    Article  PubMed  CAS  Google Scholar 

  • van Dooren GG, Tomova C, Agrawal S, Humbel BM, Striepen B (2008a) Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proc Natl Acad Sci USA 105(36):13574–13579

    Article  PubMed  Google Scholar 

  • van Dooren GG, Tomova C, Agrawal S, Humbel BM, Striepen B (2008b) Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proc Natl Acad Sci USA 105:13574–13579

    Article  PubMed  Google Scholar 

  • Varadharajan S, Dhanasekaran S, Bonday ZQ, Rangarajan PN, Padmanaban G (2002) Involvement of delta-aminolaevulinate synthase encoded by the parasite gene in de novo haem synthesis by Plasmodium falciparum. Biochem J 367(Pt 2):321–327

    Article  PubMed  CAS  Google Scholar 

  • Varadharajan S, Sagar BK, Rangarajan PN, Padmanaban G (2004) Localization of ferrochelatase in Plasmodium falciparum. Biochem J 384(Pt 2):429–436

    PubMed  CAS  Google Scholar 

  • Vaughan AM, O'Neill MT, Tarun AS, Camargo N, Phuong TM, Aly AS, Cowman AF, Kappe SH (2009) Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol 11(3):506–520

    Article  PubMed  CAS  Google Scholar 

  • Vollmer M, Thomsen N, Wiek S, Seeber F (2001) Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. J Biol Chem 276(8):5483–5490

    Article  PubMed  CAS  Google Scholar 

  • Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA 95(21):12352–12357

    Article  PubMed  CAS  Google Scholar 

  • Waller RF, McFadden GI (2005) The apicoplast: a review of the derived plastid of apicomplexan parasites. Curr Issues Mol Biol 7(1):57–79

    PubMed  Google Scholar 

  • Waller RF, Reed MB, Cowman AF, McFadden GI (2000) Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J 19:1794–1802

    Article  PubMed  CAS  Google Scholar 

  • Walters KJ (2005) Ufd1 exhibits dual ubiquitin binding modes. Structure13(7):943–944

    Article  PubMed  CAS  Google Scholar 

  • Wanke M, Skorupinska-Tudek K, Swiezewska E (2001) Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. Acta Biochim Pol 48(3):663–672

    PubMed  CAS  Google Scholar 

  • Wastl J, Maier UG (2000) Transport of proteins into cryptomonads complex plastids. J Biol Chem 275(30):23194–23198

    Article  PubMed  CAS  Google Scholar 

  • Weber AP, Linka M, Bhattacharya D (2006) Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot Cell 5(3):609–612

    Article  PubMed  CAS  Google Scholar 

  • Weissig V, Vetro-Widenhouse TS, Rowe TC (1997) Topoisomerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite Plasmodium falciparum. DNA Cell Biol 16(12):1483–1492

    Article  PubMed  CAS  Google Scholar 

  • Wiesner J, Jomaa H (2007) Isoprenoid biosynthesis of the apicoplast as drug target. Curr Drug Targets 8(1):3–13

    Article  PubMed  CAS  Google Scholar 

  • Wiesner J, Reichenberg A, Heinrich S, Schlitzer M, Jomaa H (2008) The plastid-like organelle of apicomplexan parasites as drug target. Curr Pharm Des 14(9):855–871

    Article  PubMed  CAS  Google Scholar 

  • Williamson DH, Denny PW, Moore PW, Sato S, McCready S, Wilson RJ (2001) The in vivo conformation of the plastid DNA of Toxoplasma gondii: implications for replication. J Mol Biol 306(2):159–168

    Article  PubMed  CAS  Google Scholar 

  • Williamson DH, Gardner MJ, Preiser P, Moore DJ, Rangachari K, Wilson RJ (1994) The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum: new evidence supports a possible rhodophyte ancestry. Mol Gen Genet 243(2):249–252

    PubMed  CAS  Google Scholar 

  • Williamson DH, Preiser PR, Moore PW, McCready S, Strath M, Wilson RJ (2002) The plastid DNA of the malaria parasite Plasmodium falciparum is replicated by two mechanisms. Mol Microbiol 45(2):533–542

    Article  PubMed  CAS  Google Scholar 

  • Williamson DH, Wilson RJ, Bates PA, McCready S, Perler F, Qiang BU (1985) Nuclear and mitochondrial DNA of the primate malarial parasite Plasmodium knowlesi. Mol Biochem Parasitol 14(2):199–209

    Article  PubMed  CAS  Google Scholar 

  • Wilson RJ, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW, Williamson DH (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261(2):155–172

    Article  PubMed  CAS  Google Scholar 

  • Wilson RJ, Fry M, Gardner MJ, Feagin JE, Williamson DH (1992) Subcellular fractionation of the two organelle DNAs of malaria parasites. Curr Genet 21(4–5):405–408

    Article  PubMed  CAS  Google Scholar 

  • Wilson RJ, Williamson DH (1997) Extrachromosomal DNA in the Apicomplexa. Microbiol Mol Biol Rev 61(1):1–16

    PubMed  CAS  Google Scholar 

  • Wilson RJ, Williamson DH, Preiser P (1994) Malaria and other Apicomplexans: the “plant” connection. Infect Agents Dis 3(1):29–37

    PubMed  CAS  Google Scholar 

  • Wrenger C, Muller S (2004) The human malaria parasite Plasmodium falciparum has distinct organelle-specific lipoylation pathways. Mol Microbiol 53(1):103–113

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Meyer HH, Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414(6864):652–656

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429(6994):841–847

    Article  PubMed  CAS  Google Scholar 

  • Yu M, Kumar TR, Nkrumah LJ, Coppi A, Retzlaff S, Li CD, Kelly BJ, Moura PA, Lakshmanan V, Freundlich JS, Valderramos JC, Vilcheze C, Siedner M, Tsai JH, Falkard B, Sidhu AB, Purcell LA, Gratraud P, Kremer L, Waters AP, Schiehser G, Jacobus DP, Janse CJ, Ager A, Jacobs WR Jr, Sacchettini JC, Heussler V, Sinnis P, Fidock DA (2008) The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe 4(6):567–578

    Article  PubMed  CAS  Google Scholar 

  • Yung S, Unnasch TR, Lang-Unnasch N (2001) Analysis of apicoplast targeting and transit peptide processing in Toxoplasma gondii by deletional and insertional mutagenesis. Mol Biochem Parasitol 118(1):11–21

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Marchewka MJ, Keithly JS (2000) Cryptosporidium parvum appears to lack a plastid genome. Microbiology 146:315–321

    PubMed  CAS  Google Scholar 

  • Zuther E, Johnson JJ, Haselkorn R, McLeod R, Gornicki P (1999) Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. Proc Natl Acad Sci USA 96(23):13387–13392

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in our laboratory is funded by grants from the National Institutes of Health to Boris Striepen, to Swati Agrawal who is the recipient of a predoctoral fellowship from the American Heart Association, to Lilach Sheiner who is supported by a postdoctoral fellowship from the Swiss National Science Fund, and to thank Giel van Dooren for many contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Striepen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Agrawal, S., Nair, S., Sheiner, L., Striepen, B. (2010). The Apicoplast: An Ancient Algal Endosymbiont of Apicomplexa. In: de Souza, W. (eds) Structures and Organelles in Pathogenic Protists. Microbiology Monographs, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12863-9_11

Download citation

Publish with us

Policies and ethics