Skip to main content

Pathology and Molecular Pathology of Hodgkin Lymphoma

  • Chapter
  • First Online:
  • 1225 Accesses

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

Hodgkin lymphoma (HL) comprises two disease entities: nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) and classical Hodgkin lymphoma (cHL). The new WHO classification maintains the subdivision of cHL into histological subtypes: nodular sclerosis cHL (NSCHL), mixed cellularity cHL (MCCHL), lymphocyte-depleted cHL (LDCHL), and lymphocyte-rich cHL (LRCHL). The tumor cells in NLPHL are termed lymphocyte predominant (LP) cells, whereas in cHL, Hodgkin and Reed–Sternberg (HRS) cells form the neoplastic population. HRS cells appear to be derived from germinal center (GC) B cells that normally would have undergone apoptosis, whereas LP cells originate from GC B cells that were positively selected. HRS cells have a downregulated expression of most B cell-typical genes and express multiple genes of other hematopoietic cell types. Constitutive activity of multiple signaling pathways is a hallmark of HRS cells. These pathways and transcription factors include receptor tyrosine kinases (RTK), NF-kB, Janus kinase/signal transducer and activator of transcription (JAK/STAT), and PI3 kinase, which contribute to the survival and proliferation of the malignant cells. A number of recurrent genetic lesions have been identified in HRS cells, and these often involve members of the NF-kB or JAK/STAT signaling pathways. We know less about the pathogenesis of LP cells in NLPHL, but constitutive activity of NF-kB, the JAK/STAT pathways, and of the BCL6 transcription factor appears to be involved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. Classification of tumours of haematopoietic and lymphoid tissues, 4th ed. Lyon: IARC Press; 2008.

    Google Scholar 

  2. Carbone A, Gloghini A, Gaidano G, Franceschi S, Capello D, Drexler HG, et al. Expression status of BCL-6 and syndecan-1 identifies distinct histogenetic subtypes of Hodgkin’s disease. Blood. 1998;92:2220-8.

    PubMed  CAS  Google Scholar 

  3. Greiner A, Tobollik S, Buettner M, Jungnickel B, Herrmann K, Kremmer E, et al. Differential expression of activation-induced cytidine deaminase (AID) in nodular lymphocyte-predominant and classical Hodgkin lymphoma. J Pathol 2005;205:541-7.

    Article  PubMed  CAS  Google Scholar 

  4. Hansmann ML, Fellbaum C, Hui PK, Zwingers T. Correlation of content of B cells and Leu7-positive cells with subtype and stage in lymphocyte predominance type Hodgkin’s disease. J Cancer Res Clin Oncol. 1988;114:405-10.

    Google Scholar 

  5. Kamel OW, Gelb AB, Shibuya RB, Warnke RA. Leu 7 (CD57) reactivity distinguishes nodular lymphocyte predominance Hodgkin’s disease from nodular sclerosing Hodgkin’s disease, T-cell-rich B-cell lymphoma and follicular lymphoma. Am J Pathol. 1993;142:541-6.

    PubMed  CAS  Google Scholar 

  6. Nam-Cha SH, Roncador G, Sanchez-Verde L, Montes-Moreno S, Acevedo A, Dominguez-Franjo P, et al. PD-1, a follicular T-cell marker useful for recognizing nodular lymphocyte-predominant Hodgkin lymphoma. Am J Surg Pathol. 2008;32:1252-7.

    Article  PubMed  Google Scholar 

  7. Foss HD, Reusch R, Demel G, Lenz G, Anagnostopoulos I, Hummel M, et al. Frequent expression of the B-cell-specific activator protein in Reed-Sternberg cells of classical Hodgkin’s disease provides further evidence for its B-cell origin. Blood. 1999;94:3108-13.

    PubMed  CAS  Google Scholar 

  8. Korkolopoulou P, Cordell J, Jones M, Kaklamanis L, Tsenga A, Gatter KC, et al. The expression of the B-cell marker mb-1 (CD79a) in Hodgkin’s disease. Histopathology. 1994;24:511-5.

    Article  PubMed  CAS  Google Scholar 

  9. Kuzu I, Delsol G, Jones M, Gatter KC, Mason DY. Expression of the Ig-associated heterodimer (mb-1 and B29) in Hodgkin’s disease. Histopathology. 1993;22:141-4.

    Article  PubMed  CAS  Google Scholar 

  10. Müschen M, Rajewsky K, Bräuninger A, Baur AS, Oudejans JJ, Roers A, et al. Rare occurrence of classical Hodgkin’s disease as a T cell lymphoma. J Exp Med. 2000; 191:387-94.

    Article  PubMed  Google Scholar 

  11. Seitz V, Hummel M, Marafioti T, Anagnostopoulos I, Assaf C, Stein H. Detection of clonal T-cell receptor gamma-chain gene rearrangements in Reed-Sternberg cells of classic Hodgkin disease. Blood. 2000;95:3020-4.

    PubMed  CAS  Google Scholar 

  12. Mani H, Jaffe ES. Hodgkin lymphoma: an update on its biology with new insights into classification. Clin Lymphoma Myeloma 2009;9:206-6.

    Article  PubMed  Google Scholar 

  13. Traverse-Glehen A, Pittaluga S, Gaulard P, Sorbara L, Alonso MA, Raffeld M, et al. Mediastinal gray zone lymphoma: the missing link between classic Hodgkin’s lymphoma and mediastinal large B-cell lymphoma. Am J Surg Pathol. 2005; 29:1411-21.

    Article  PubMed  Google Scholar 

  14. Eckerle S, Brune V, Döring C, Tiacci E, Bohle V, Sundstrom C, et al. Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma. Leukemia 2009;23(11):2129-38.

    Article  PubMed  CAS  Google Scholar 

  15. Asano N, Yamamoto K, Tamaru J, Oyama T, Ishida F, Ohshima K, et al. Age-related Epstein-Barr virus (EBV)-associated B-cell lymphoproliferative disorders: comparison with EBV-positive classic Hodgkin lymphoma in elderly patients. Blood. 2009;113:2629-36.

    Article  PubMed  CAS  Google Scholar 

  16. Kanzler H, Küppers R, Hansmann ML, Rajewsky K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med. 1996;184:1495-505.

    Article  PubMed  CAS  Google Scholar 

  17. Küppers R, Rajewsky K, Zhao M, Simons G, Laumann R, Fischer R, et al. Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci USA. 1994;91:10962-6.

    Article  PubMed  Google Scholar 

  18. Marafioti T, Hummel M, Foss H-D, Laumen H, Korbjuhn P, Anagnostopoulos I, et al. Hodgkin and Reed-Sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood. 2000;95:1443-50.

    PubMed  CAS  Google Scholar 

  19. Müschen M, Küppers R, Spieker T, Bräuninger A, Rajewsky K, Hansmann ML. Molecular single-cell analysis of Hodgkin- and Reed-Sternberg cells harboring unmutated immunoglobulin variable region genes. Lab Invest. 2001;81:289-5.

    Article  PubMed  Google Scholar 

  20. Küppers R, Zhao M, Hansmann ML, Rajewsky K. Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J. 1993;12:4955-67.

    PubMed  Google Scholar 

  21. Küppers R, Rajewsky K. The origin of Hodgkin and Reed/Sternberg cells in Hodgkin’s disease. Annu Rev Immunol. 1998;16:471-93.

    Article  PubMed  Google Scholar 

  22. Lebecque S, de Bouteiller O, Arpin C, Banchereau J, Liu YJ. Germinal center founder cells display propensity for apoptosis before onset of somatic mutation. J Exp Med. 1997;185:563-71.

    Article  PubMed  CAS  Google Scholar 

  23. Bräuninger A, Hansmann ML, Strickler JG, Dummer R, Burg G, Rajewsky K, et al. Identification of common germinal-center B-cell precursors in two patients with both Hodgkin’s disease and Non-Hodgkin’s lymphoma. N Engl J Med. 1999;340:1239-47.

    Article  PubMed  Google Scholar 

  24. Küppers R, Sousa AB, Baur AS, Strickler JG, Rajewsky K, Hansmann ML. Common germinal-center B-cell origin of the malignant cells in two composite lymphomas, involving classical Hodgkin’s disease and either follicular lymphoma or B-CLL. Mol Med. 2001;7:285-92.

    PubMed  Google Scholar 

  25. Marafioti T, Hummel M, Anagnostopoulos I, Foss HD, Huhn D, Stein H. Classical Hodgkin’s disease and follicular lymphoma originating from the same germinal center B cell. J Clin Oncol. 1999;17:3804-9.

    PubMed  CAS  Google Scholar 

  26. Montes-Moreno S, Roncador G, Maestre L, Martinez N, Sanchez-Verde L, Camacho FI, et al. Gcet1 (centerin), a highly restricted marker for a subset of germinal center-derived lymphomas. Blood. 2008;111:351-8.

    Article  PubMed  CAS  Google Scholar 

  27. Natkunam Y, Lossos IS, Taidi B, Zhao S, Lu X, Ding F, et al. Expression of the human germinal center-associated lymphoma (HGAL) protein, a new marker of germinal center B-cell derivation. Blood. 2005;105:3979-86.

    Article  PubMed  CAS  Google Scholar 

  28. Braeuninger A, Küppers R, Strickler JG, Wacker HH, Rajewsky K, Hansmann ML. Hodgkin and Reed-Sternberg cells in lymphocyte predominant Hodgkin disease represent clonal populations of germinal center-derived tumor B cells. Proc Natl Acad Sci USA. 1997;94:9337-42.

    Article  PubMed  CAS  Google Scholar 

  29. Marafioti T, Hummel M, Anagnostopoulos I, Foss HD, Falini B, Delsol G, et al. Origin of nodular lymphocyte-predominant Hodgkin’s disease from a clonal expansion of highly mutated germinal-center B cells. N Engl J Med. 1997;337:453-8.

    Article  PubMed  CAS  Google Scholar 

  30. Ohno T, Stribley JA, Wu G, Hinrichs SH, Weisenburger DD, Chan WC. Clonality in nodular lymphocyte-predominant Hodgkin’s disease. N Engl J Med. 1997;337:459-65.

    Article  PubMed  CAS  Google Scholar 

  31. Brune V, Tiacci E, Pfeil I, Döring C, Eckerle S, van Noesel CJM, et al. Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med. 2008;205:2251-68.

    Article  PubMed  CAS  Google Scholar 

  32. Küppers R, Bräuninger A, Müschen M, Distler V, Hansmann ML, Rajewsky K. Evidence that Hodgkin and Reed-Sternberg cells in Hodgkin disease do not represent cell fusions. Blood. 2001;97:818-21.

    Article  PubMed  Google Scholar 

  33. Drexler HG, Gignac SM, Hoffbrand AV, Minowada J. Formation of multinucleated cells in a Hodgkin’s-disease-derived cell line. Int J Cancer. 1989;43:1083-90.

    Article  PubMed  CAS  Google Scholar 

  34. Newcom SR, Kadin ME, Phillips C. L-428 Reed-Sternberg cells and mononuclear Hodgkin’s cells arise from a single cloned mononuclear cell. Int J Cell Cloning. 1988;6:417-31.

    Article  PubMed  CAS  Google Scholar 

  35. Jansen MP, Hopman AH, Bot FJ, Haesevoets A, Stevens-Kroef MJ, Arends JW, et al. Morphologically normal, CD30-negative B-lymphocytes with chromosome aberrations in classical Hodgkin’s disease: the progenitor cell of the malignant clone? J Pathol. 1999;189:527-32.

    Article  PubMed  CAS  Google Scholar 

  36. Spieker T, Kurth J, Küppers R, Rajewsky K, Bräuninger A, Hansmann ML. Molecular single-cell analysis of the clonal relationship of small Epstein-Barr virus-infected cells and Epstein-Barr virus-harboring Hodgkin and Reed/Sternberg cells in Hodgkin disease. Blood. 2000;96:3133-8.

    PubMed  CAS  Google Scholar 

  37. Jones RJ, Gocke CD, Kasamon YL, Miller CB, Perkins B, Barber JP, et al. Circulating clonotypic B cells in classic Hodgkin lymphoma. Blood. 2009;113:5920-6.

    Article  PubMed  CAS  Google Scholar 

  38. Küppers R. Clonogenic B cells in classic Hodgkin lymphoma. Blood. 2009;114(18):3970-1.

    Article  PubMed  Google Scholar 

  39. Vockerodt M, Soares M, Kanzler H, Küppers R, Kube D, Hansmann ML, et al. Detection of clonal Hodgkin and Reed-Sternberg cells with identical somatically mutated and rearranged VH genes in different biopsies in relapsed Hodgkin’s disease. Blood. 1998;92:2899-907.

    PubMed  CAS  Google Scholar 

  40. Weber-Matthiesen K, Deerberg J, Poetsch M, Grote W, Schlegelberger B. Numerical chromosome aberrations are present within the CD30+ Hodgkin and Reed-Sternberg cells in 100% of analyzed cases of Hodgkin’s disease. Blood. 1995;86:1464-8.

    PubMed  CAS  Google Scholar 

  41. Martin-Subero JI, Klapper W, Sotnikova A, Callet-Bauchu E, Harder L, Bastard C, et al. Chromosomal breakpoints affecting immunoglobulin loci are recurrent in Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma. Cancer Res. 2006;66:10332-8.

    Article  PubMed  CAS  Google Scholar 

  42. Szymanowska N, Klapper W, Gesk S, Küppers R, Martin-Subero JI, Siebert R. BCL2 and BCL3 are recurrent translocation partners of the IGH locus. Cancer Genet Cytogenet. 2008;186:110-4.

    Article  PubMed  CAS  Google Scholar 

  43. Gravel S, Delsol G, Al Saati T. Single-cell analysis of the t(14;18)(q32;p21) chromosomal translocation in Hodgkin’s disease demonstrates the absence of this transformation in neoplastic Hodgkin and Reed-Sternberg cells. Blood. 1998;91:2866-74.

    PubMed  CAS  Google Scholar 

  44. Poppema S, Kaleta J, Hepperle B. Chromosomal abnormalities in patients with Hodgkin’s disease: evidence for frequent involvement of the 14q chromosomal region but infrequent bcl-2 gene rearrangement in Reed-Sternberg cells. J Natl Cancer Inst. 1992;84:1789-93.

    Article  PubMed  CAS  Google Scholar 

  45. Renné C, Martin-Subero JI, Hansmann ML, Siebert R. Molecular cytogenetic analyses of immunoglobulin loci in nodular lymphocyte predominant Hodgkin’s lymphoma reveal a recurrent IGH-BCL6 juxtaposition. J Mol Diagn. 2005;7:352-6.

    Article  PubMed  Google Scholar 

  46. Wlodarska I, Nooyen P, Maes B, Martin-Subero JI, Siebert R, Pauwels P, et al. Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominance Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood. 2003;101:706-10.

    Article  PubMed  CAS  Google Scholar 

  47. Wlodarska I, Stul M, De Wolf-Peeters C, Hagemeijer A. Heterogeneity of BCL6 rearrangements in nodular lymphocyte predominant Hodgkin’s lymphoma. Haematologica. 2004;89:965-72.

    PubMed  CAS  Google Scholar 

  48. Maggio EM, van den Berg A, de Jong D, Diepstra A, Poppema S. Low frequency of FAS mutations in Reed-Sternberg cells of Hodgkin’s lymphoma. Am J Pathol. 2003;162:29-35.

    Article  PubMed  CAS  Google Scholar 

  49. Müschen M, Re D, Bräuninger A, Wolf J, Hansmann ML, Diehl V, et al. Somatic mutations of the CD95 gene in Hodgkin and Reed-Sternberg cells. Cancer Res. 2000;60:5640-3.

    PubMed  Google Scholar 

  50. Thomas RK, Schmitz R, Harttrampf AC, Abdil-Hadi A, Wickenhauser C, Distler V, et al. Apoptosis-resistant phenotype of classical Hodgkin’s lymphoma is not mediated by somatic mutations within genes encoding members of the death-inducing signaling complex (DISC). Leukemia. 2005;19:1079-82.

    Article  PubMed  CAS  Google Scholar 

  51. Bose S, Starczynski J, Chukwuma M, Baumforth K, Wei W, Morgan S, et al. Down-regulation of ATM protein in HRS cells of nodular sclerosis Hodgkin’s lymphoma in children occurs in the absence of ATM gene inactivation. J Pathol. 2007;213:329-36.

    Article  PubMed  CAS  Google Scholar 

  52. Lespinet V, Terraz F, Recher C, Campo E, Hall J, Delsol G, et al. Single-cell analysis of loss of heterozygosity at the ATM gene locus in Hodgkin and Reed-Sternberg cells of Hodgkin’s lymphoma: ATM loss of heterozygosity is a rare event. Int J Cancer. 2005;114:909-16.

    Article  PubMed  CAS  Google Scholar 

  53. Schmitz R, Thomas RK, Harttrampf AC, Wickenhauser C, Schultze JL, Hansmann ML, et al. The major subtypes of human B-cell lymphomas lack mutations in BCL-2 family member BAD. Int J Cancer. 2006;119:1738-40.

    Article  PubMed  CAS  Google Scholar 

  54. Maggio EM, Stekelenburg E, Van den Berg A, Poppema S. TP53 gene mutations in Hodgkin lymphoma are infrequent and not associated with absence of Epstein-Barr virus. Int J Cancer. 2001;94:60-6.

    Article  PubMed  CAS  Google Scholar 

  55. Montesinos-Rongen M, Roers A, Küppers R, Rajewsky K, Hansmann M-L. Mutation of the p53 gene is not a typical feature of Hodgkin and Reed-Sternberg cells in Hodgkin’s disease. Blood. 1999;94:1755-60.

    PubMed  CAS  Google Scholar 

  56. Feuerborn A, Moritz C, Von Bonin F, Dobbelstein M, Trümper L, Sturzenhofecker B, et al. Dysfunctional p53 deletion mutants in cell lines derived from Hodgkin’s lymphoma. Leuk Lymphoma. 2006;47:1932-40.

    Article  PubMed  CAS  Google Scholar 

  57. Küpper M, Joos S, Von Bonin F, Daus H, Pfreundschuh M, Lichter P, et al. MDM2 gene amplification and lack of p53 point mutations in Hodgkin and Reed-Sternberg cells: results from single-cell polymerase chain reaction and molecular cytogenetic studies. Br J Haematol. 2001;112:768-75.

    Article  PubMed  Google Scholar 

  58. Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT. Mutations in the IκBα gene in Hodgkin’s disease suggest a tumour suppressor role for IκBα. Oncogene. 1999;18:3063-70.

    Article  PubMed  CAS  Google Scholar 

  59. Emmerich F, Meiser M, Hummel M, Demel G, Foss HD, Jundt F, et al. Overexpression of I kappa B alpha without inhibition of NF-kappaB activity and mutations in the I kappa B alpha gene in Reed-Sternberg cells. Blood. 1999;94:3129-34.

    PubMed  CAS  Google Scholar 

  60. Jungnickel B, Staratschek-Jox A, Bräuninger A, Spieker T, Wolf J, Diehl V, et al. Clonal deleterious mutations in the iκBα gene in the malignant cells in Hodgkin’s disease. J Exp Med. 2000;191:395-401.

    Article  PubMed  CAS  Google Scholar 

  61. Lake A, Shield LA, Cordano P, Chui DT, Osborne J, Crae S, et al. Mutations of NFKBIA, encoding IkappaBalpha, are a recurrent finding in classical Hodgkin lymphoma but are not a unifying feature of non-EBV-associated cases. Int J Cancer. 2009;125:1334-42.

    Article  PubMed  CAS  Google Scholar 

  62. Emmerich F, Theurich S, Hummel M, Haeffker A, Vry MS, Döhner K, et al. Inactivating I kappa B epsilon mutations in Hodgkin/Reed-Sternberg cells. J Pathol. 2003;201:413-20.

    Article  PubMed  CAS  Google Scholar 

  63. Joos S, Granzow M, Holtgreve-Grez H, Siebert R, Harder L, Martin-Subero JI, et al. Hodgkin’s lymphoma cell lines are characterized by frequent aberrations on chromosomes 2p and 9p including REL and JAK2. Int J Cancer. 2003;103:489-95.

    Article  PubMed  CAS  Google Scholar 

  64. Joos S, Menz CK, Wrobel G, Siebert R, Gesk S, Ohl S, et al. Classical Hodgkin lymphoma is characterized by recurrent copy number gains of the short arm of chromosome 2. Blood. 2002;99:1381-7.

    Article  PubMed  CAS  Google Scholar 

  65. Martin-Subero JI, Gesk S, Harder L, Sonoki T, Tucker PW, Schlegelberger B, et al. Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood. 2002;99:1474-7.

    Article  PubMed  CAS  Google Scholar 

  66. Barth TF, Martin-Subero JI, Joos S, Menz CK, Hasel C, Mechtersheimer G, et al. Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood. 2003;101:3681-6.

    Article  PubMed  CAS  Google Scholar 

  67. Martin-Subero JI, Wlodarska I, Bastard C, Picquenot JM, Höppner J, Giefing M, et al. Chromosomal rearrangements involving the BCL3 locus are recurrent in classical Hodgkin and peripheral T-cell lymphoma. Blood. 2006;108:401-2.

    Article  PubMed  CAS  Google Scholar 

  68. Mathas S, Jöhrens K, Joos S, Lietz A, Hummel F, Janz M, et al. Elevated NF-kappaB p50 complex formation and Bcl-3 expression in classical Hodgkin, anaplastic large-cell, and other peripheral T-cell lymphomas. Blood. 2005;106:4287-93.

    Article  PubMed  CAS  Google Scholar 

  69. Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K, et al. Frequent inactivation of A20 in B-cell lymphomas. Nature. 2009;459:712-6.

    Article  PubMed  CAS  Google Scholar 

  70. Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G, et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med. 2009;206:981-9.

    Article  PubMed  CAS  Google Scholar 

  71. Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell. 1995;80:389-99.

    Article  PubMed  CAS  Google Scholar 

  72. Uchida J, Yasui T, Takaoka-Shichijo Y, Muraoka M, Kulwichit W, Raab-Traub N, et al. Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science. 1999;286:300-3.

    Article  PubMed  CAS  Google Scholar 

  73. Schumacher MA, Schmitz R, Brune V, Tiacci E, Döring C, Hansmann ML, et al. Mutations in the genes coding for the NF-{kappa}B regulating factors I{kappa}B{alpha} and A20 are uncommon in nodular lymphocyte-predominant Hodgkin lymphoma. Haematologica. 2009;95(1):153-7.

    Article  PubMed  CAS  Google Scholar 

  74. Mottok A, Renné C, Willenbrock K, Hansmann ML, Bräuninger A. Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6. Blood. 2007;110:3387-90.

    Article  PubMed  CAS  Google Scholar 

  75. Weniger MA, Melzner I, Menz CK, Wegener S, Bucur AJ, Dorsch K, et al. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene. 2006;25:2679-84.

    Article  PubMed  CAS  Google Scholar 

  76. Joos S, Küpper M, Ohl S, von Bonin F, Mechtersheimer G, Bentz M, et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 2000;60:549-52.

    PubMed  CAS  Google Scholar 

  77. Re D, Müschen M, Ahmadi T, Wickenhauser C, Staratschek-Jox A, Holtick U, et al. Oct-2 and Bob-1 deficiency in Hodgkin and Reed Sternberg cells. Cancer Res. 2001;61:2080-4.

    PubMed  CAS  Google Scholar 

  78. Stein H, Marafioti T, Foss HD, Laumen H, Hummel M, Anagnostopoulos I, et al. Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood. 2001;97:496-501.

    Article  PubMed  CAS  Google Scholar 

  79. Watanabe K, Yamashita Y, Nakayama A, Hasegawa Y, Kojima H, Nagasawa T, et al. Varied B-cell immunophenotypes of Hodgkin/Reed-Sternberg cells in classic Hodgkin’s disease. Histopathol. 2000;36:353-61.

    Article  CAS  Google Scholar 

  80. Schwering I, Bräuninger A, Klein U, Jungnickel B, Tinguely M, Diehl V, et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2003;101:1505-12.

    Article  PubMed  CAS  Google Scholar 

  81. Poppema S. Immunology of Hodgkin’s disease. Baillieres Clin Haematol. 1996;9:447-57.

    Article  PubMed  CAS  Google Scholar 

  82. Carbone A, Gloghini A, Gruss HJ, Pinto A. CD40 ligand is constitutively expressed in a subset of T cell lymphomas and on the microenvironmental reactive T cells of follicular lymphomas and Hodgkin’s disease. Am J Pathol. 1995;147:912-22.

    PubMed  CAS  Google Scholar 

  83. Torlakovic E, Tierens A, Dang HD, Delabie J. The transcription factor PU.1, necessary for B-cell development is expressed in lymphocyte predominance, but not classical Hodgkin’s disease. Am J Pathol. 2001;159:1807-14.

    Article  PubMed  CAS  Google Scholar 

  84. Küppers R, Klein U, Schwering I, Distler V, Bräuninger A, Cattoretti G, et al. Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest. 2003;111:529-37.

    PubMed  Google Scholar 

  85. Mathas S, Janz M, Hummel F, Hummel M, Wollert-Wulf B, Lusatis S, et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nature Immunol. 2006;7:207-15.

    Article  CAS  Google Scholar 

  86. Renné C, Martin-Subero JI, Eickernjager M, Hansmann ML, Küppers R, Siebert R, et al. Aberrant expression of ID2, a suppressor of B-cell-specific gene expression, in Hodgkin’s lymphoma. Am J Pathol. 2006;169:655-64.

    Article  PubMed  CAS  Google Scholar 

  87. Hacker C, Kirsch RD, Ju XS, Hieronymus T, Gust TC, Kuhl C, et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol. 2003;4:380-6.

    Article  PubMed  CAS  Google Scholar 

  88. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature. 1999;397:702-6.

    Article  PubMed  CAS  Google Scholar 

  89. Jundt F, Acikgoz O, Kwon SH, Schwarzer R, Anagnostopoulos I, Wiesner B, et al. Aberrant expression of Notch1 interferes with the B-lymphoid phenotype of neoplastic B cells in classical Hodgkin lymphoma. Leukemia. 2008;22(8):1587-94.

    Article  PubMed  CAS  Google Scholar 

  90. Jundt F, Anagnostopoulos I, Förster R, Mathas S, Stein H, Dörken B. Activated Notch 1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood. 2001;99:3398-403.

    Article  Google Scholar 

  91. Scheeren FA, Diehl SA, Smit LA, Beaumont T, Naspetti M, Bende RJ, et al. IL-21 is expressed in Hodgkin lymphoma and activates STAT5; evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood. 2008;111:4706-15.

    Article  PubMed  CAS  Google Scholar 

  92. Doerr JR, Malone CS, Fike FM, Gordon MS, Soghomonian SV, Thomas RK, et al. Patterned CpG methylation of silenced B cell gene promoters in classical Hodgkin lymphoma-derived and primary effusion lymphoma cell lines. J Mol Biol. 2005;350:631-40.

    Article  PubMed  CAS  Google Scholar 

  93. Ushmorov A, Leithäuser F, Sakk O, Weinhausel A, Popov SW, Möller P, et al. Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood. 2005;107:2493-500.

    Article  PubMed  CAS  Google Scholar 

  94. Dukers DF, van Galen JC, Giroth C, Jansen P, Sewalt RG, Otte AP, et al. Unique polycomb gene expression pattern in Hodgkin’s lymphoma and Hodgkin’s lymphoma-derived cell lines. Am J Pathol. 2004;164:873-81.

    Article  PubMed  CAS  Google Scholar 

  95. Raaphorst FM, van Kemenade FJ, Blokzijl T, Fieret E, Hamer KM, Satijn DP, et al. Coexpression of BMI-1 and EZH2 polycomb group genes in Reed-Sternberg cells of Hodgkin’s disease. Am J Pathol. 2000;157:709-15.

    Article  PubMed  CAS  Google Scholar 

  96. Sanchez-Beato M, Sanchez E, Garcia JF, Perez-Rosado A, Montoya MC, Fraga M, et al. Abnormal PcG protein expression in Hodgkin’s lymphoma. Relation with E2F6 and NFkappaB transcription factors. J Pathol. 2004;204:528-37.

    Article  PubMed  CAS  Google Scholar 

  97. Schneider EM, Torlakovic E, Stuhler A, Diehl V, Tesch H, Giebel B. The early transcription factor GATA-2 is expressed in classical Hodgkin’s lymphoma. J Pathol. 2004;204:538-45.

    Article  PubMed  CAS  Google Scholar 

  98. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, et al. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest. 1997;100:2961-9.

    Article  PubMed  CAS  Google Scholar 

  99. Carbone A, Gloghini A, Gattei V, Aldinucci D, Degan M, De Paoli P, et al. Expression of functional CD40 antigen on Reed-Sternberg cells and Hodgkin’s disease cell lines. Blood. 1995;85:780-9.

    PubMed  CAS  Google Scholar 

  100. Chiu A, Xu W, He B, Dillon SR, Gross JA, Sievers E, et al. Hodgkin lymphoma cells express TACI and BCMA receptors and generate survival and proliferation signals in response to BAFF and APRIL. Blood. 2007;109:729-39.

    Article  PubMed  CAS  Google Scholar 

  101. Fiumara P, Snell V, Li Y, Mukhopadhyay A, Younes M, Gillenwater AM, et al. Functional expression of receptor activator of nuclear factor kappaB in Hodgkin disease cell lines. Blood. 2001;98:2784-90.

    Article  PubMed  CAS  Google Scholar 

  102. Molin D, Fischer M, Xiang Z, Larsson U, Harvima I, Venge P, et al. Mast cells express functional CD30 ligand and are the predominant CD30L-positive cells in Hodgkin’s disease. Br J Haematol. 2001;114:616-23.

    Article  PubMed  CAS  Google Scholar 

  103. Schwab U, Stein H, Gerdes J, Lemke H, Kirchner H, Schaadt M, et al. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin’s disease and a subset of normal lymphoid cells. Nature. 1982;299:65-7.

    Article  PubMed  CAS  Google Scholar 

  104. Hirsch B, Hummel M, Bentink S, Fouladi F, Spang R, Zollinger R, et al. CD30-induced signaling is absent in Hodgkin’s cells but present in anaplastic large cell lymphoma cells. Am J Pathol. 2008;172:510-20.

    Article  PubMed  CAS  Google Scholar 

  105. Horie R, Watanabe T, Morishita Y, Ito K, Ishida T, Kanegae Y, et al. Ligand-independent signaling by overexpressed CD30 drives NF-kappaB activation in Hodgkin-Reed-Sternberg cells. Oncogene. 2002;21:2493-503.

    Article  PubMed  CAS  Google Scholar 

  106. Kilger E, Kieser A, Baumann M, Hammerschmidt W. Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 1998;17:1700-9.

    Article  PubMed  CAS  Google Scholar 

  107. Baus D, Pfitzner E. Specific function of STAT3, SOCS1, and SOCS3 in the regulation of proliferation and survival of classical Hodgkin lymphoma cells. Int J Cancer. 2006;118:1404-13.

    Article  PubMed  CAS  Google Scholar 

  108. Kube D, Holtick U, Vockerodt M, Ahmadi T, Behrmann I, Heinrich PC, et al. STAT3 is constitutively activated in Hodgkin cell lines. Blood. 2001;98:762-70.

    Article  PubMed  CAS  Google Scholar 

  109. Skinnider BF, Elia AJ, Gascoyne RD, Patterson B, Trümper L, Kapp U, et al. Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2002;99:618-26.

    Article  PubMed  CAS  Google Scholar 

  110. Kapp U, Yeh WC, Patterson B, Elia AJ, Kagi D, Ho A, et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J Exp Med. 1999;189:1939-46.

    Article  PubMed  CAS  Google Scholar 

  111. Skinnider BF, Elia AJ, Gascoyne RD, Trumper LH, von Bonin F, Kapp U, et al. Interleukin 13 and interleukin 13 receptor are frequently expressed by Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2001;97:250-5.

    Article  PubMed  CAS  Google Scholar 

  112. Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S, et al. Nuclear factor kappaB-dependent gene expression profiling of Hodgkin’s disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med. 2002;196:605-17.

    Article  PubMed  CAS  Google Scholar 

  113. Lamprecht B, Kreher S, Anagnostopoulos I, Johrens K, Monteleone G, Jundt F, et al. Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3{alpha}. Blood. 2008;112:3339-47.

    Article  PubMed  CAS  Google Scholar 

  114. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411:355-65.

    Article  PubMed  CAS  Google Scholar 

  115. Renné C, Willenbrock K, Küppers R, Hansmann M-L, Bräuninger A. Autocrine and paracrine activated receptor tyrosine kinases in classical Hodgkin lymphoma. Blood. 2005;105:4051-9.

    Article  PubMed  CAS  Google Scholar 

  116. Teofili L, Di Febo AL, Pierconti F, Maggiano N, Bendandi M, Rutella S, et al. Expression of the c-met proto-oncogene and its ligand, hepatocyte growth factor, in Hodgkin disease. Blood. 2001;97:1063-9.

    Article  PubMed  CAS  Google Scholar 

  117. Renné C, Willenbrock K, Martin-Subero JI, Hinsch N, Döring C, Tiacci E, et al. High expression of several tyrosine kinases and activation of the PI3K/AKT pathway in mediastinal large B cell lymphoma reveals further similarities to Hodgkin lymphoma. Leukemia. 2007;21:780-7.

    Article  PubMed  CAS  Google Scholar 

  118. Renné C, Hinsch N, Willenbrock K, Fuchs M, Klapper W, Engert A, et al. The aberrant coexpression of several receptor tyrosine kinases is largely restricted to EBV-negative cases of classical Hodgkin’s lymphoma. Int J Cancer. 2007;120:2504-9.

    Article  PubMed  CAS  Google Scholar 

  119. Renne C, Minner S, Küppers R, Hansmann ML, Bräuninger A. Autocrine NGFbeta/TRKA signalling is an important survival factor for Hodgkin lymphoma derived cell lines. Leuk Res. 2008;32:163-7.

    Article  PubMed  CAS  Google Scholar 

  120. Nagel S, Burek C, Venturini L, Scherr M, Quentmeier H, Meyer C, et al. Comprehensive analysis of homeobox genes in Hodgkin lymphoma cell lines identifies dysregulated expression of HOXB9 mediated via ERK5 signaling and BMI1. Blood. 2007;109:3015-23.

    PubMed  CAS  Google Scholar 

  121. Zheng B, Fiumara P, Li YV, Georgakis G, Snell V, Younes M, et al. MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood. 2003;102:1019-27.

    Article  PubMed  CAS  Google Scholar 

  122. Mathas S, Hinz M, Anagnostopoulos I, Krappmann D, Lietz A, Jundt F, et al. Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappa B. EMBO J. 2002;21:4104-13.

    Article  PubMed  CAS  Google Scholar 

  123. Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K, Abramson J, et al. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci USA. 2007;104:13134-9.

    Article  PubMed  CAS  Google Scholar 

  124. Watanabe M, Ogawa Y, Ito K, Higashihara M, Kadin ME, Abraham LJ, et al. AP-1 mediated relief of repressive activity of the CD30 promoter microsatellite in Hodgkin and Reed-Sternberg cells. Am J Pathol. 2003;163:633-41.

    Article  PubMed  CAS  Google Scholar 

  125. Dutton A, Reynolds GM, Dawson CW, Young LS, Murray PG. Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol. 2005;205:498-506.

    Article  PubMed  CAS  Google Scholar 

  126. Georgakis GV, Li Y, Rassidakis GZ, Medeiros LJ, Mills GB, Younes A. Inhibition of the phosphatidylinositol-3 kinase/Akt promotes G1 cell cycle arrest and apoptosis in Hodgkin lymphoma. Br J Haematol. 2006;132:503-11.

    PubMed  CAS  Google Scholar 

  127. Dutton A, O’Neil JD, Milner AE, Reynolds GM, Starczynski J, Crocker J, et al. Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin’s lymphoma cells from autonomous Fas-mediated death. Proc Natl Acad Sci USA. 2004;101:6611-6.

    Article  PubMed  CAS  Google Scholar 

  128. Mathas S, Lietz A, Anagnostopoulos I, Hummel F, Wiesner B, Janz M, et al. c-FLIP mediates resistance of Hodgkin/Reed-Sternberg cells to death receptor-induced apoptosis. J Exp Med. 2004;199:1041-52.

    Article  PubMed  CAS  Google Scholar 

  129. Re D, Hofmann A, Wolf J, Diehl V, Staratschek-Jox A. Cultivated H-RS cells are resistant to CD95L-mediated apoptosis despite expression of wild-type CD95. Exp Hematol. 2000;28:31-5.

    Article  PubMed  CAS  Google Scholar 

  130. Chu WS, Aguilera NS, Wei MQ, Abbondanzo SL. Antiapoptotic marker Bcl-X(L), expression on Reed-Sternberg cells of Hodgkin’s disease using a novel monoclonal marker, YTH-2H12. Hum Pathol. 1999;30:1065-70.

    Article  PubMed  CAS  Google Scholar 

  131. Kashkar H, Haefs C, Shin H, Hamilton-Dutoit SJ, Salvesen GS, Krönke M, et al. XIAP-mediated caspase inhibition in Hodgkin’s lymphoma-derived B cells. J Exp Med. 2003;198:341-7.

    Article  PubMed  CAS  Google Scholar 

  132. Kashkar H, Seeger JM, Hombach A, Deggerich A, Yazdanpanah B, Utermohlen O, et al. XIAP targeting sensitizes Hodgkin lymphoma cells for cytolytic T-cell attack. Blood. 2006;108:3434-40.

    Article  PubMed  CAS  Google Scholar 

  133. Sanchez-Beato M, Piris MA, Martinez-Montero JC, Garcia JF, Villuendas R, Garcia FJ, et al. MDM2 and p21WAF1/CIP1, wild-type p53-induced proteins, are regularly expressed by Sternberg-Reed cells in Hodgkin’s disease. J Pathol. 1996;180:58-64.

    Article  PubMed  CAS  Google Scholar 

  134. Drakos E, Thomaides A, Medeiros LJ, Li J, Leventaki V, Konopleva M, et al. Inhibition of p53-murine double minute 2 interaction by nutlin-3A stabilizes p53 and induces cell cycle arrest and apoptosis in Hodgkin lymphoma. Clin Cancer Res. 2007;13:3380-7.

    Article  PubMed  CAS  Google Scholar 

  135. Janz M, Stuhmer T, Vassilev LT, Bargou RC. Pharmacologic activation of p53-dependent and p53-independent apoptotic pathways in Hodgkin/Reed-Sternberg cells. Leukemia. 2007;21:772-9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Küppers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosenwald, A., Küppers, R. (2011). Pathology and Molecular Pathology of Hodgkin Lymphoma. In: Engert, A., Horning, S. (eds) Hodgkin Lymphoma. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12780-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12780-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12779-3

  • Online ISBN: 978-3-642-12780-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics