Skip to main content

Imaging of Acute Ischemic Stroke: Stroke CT Angiography (CTA)

  • Chapter
  • First Online:
Acute Ischemic Stroke

Abstract

Death or incapacitating disability can be prevented or diminished in some patients who present within 6 h of embolic stroke onset by thrombolytic therapy [1–16]. Conventional, noncontrast head CT (NCCT) scanning is performed on all patients prior to treatment in order to exclude hemorrhage or a large (greater than one-third middle cerebral artery [MCA] territory) infarction, both of which are contraindications to treatment [13, 15, 16]. The role of NCCT in the evaluation of acute stroke is fully discussed in the previous chapter. Although NCCT has some value in predicting patients most likely to be harmed by thrombolysis, it is of little value in predicting the patients most likely to benefit from thrombolysis–those with major artery occlusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams HP, Brott TG, Ferlan AJ et al (1996) Guidelines for thrombolytic therapy for acute stroke: a supplement to the guidelines for the management of patients with acute ischemic stroke. Circulation 94:1167–1174.

    Article  PubMed  Google Scholar 

  2. Alberts MJ (1998) tPA in acute ischemic stroke–United States experience and issues for the future. Neurology 51:S53–S55.

    Google Scholar 

  3. Barr JD, Mathis JM, Wildenhain SL, Wechsler L, Jungreis CA, Horton JA (1994) Acute stroke intervention with intraarterial urokinase infusion. J Vasc Intervent Radiol 5:705–713.

    Article  CAS  Google Scholar 

  4. Caplan L, Mohr JP, Kistler P et al (1997) Should thrombolytic therapy be the first-line treatment for acute ischemic stroke? N Engl J Med 337:1309–1310.

    Article  PubMed  CAS  Google Scholar 

  5. Chiu D, Krieger D, Villar-Cordova C et al (1998) Intravenous tissue plasminogen activator for acute ischemic stroke: feasibility, safety, and efficacy in the first year of clinical practice. Stroke 29:18–22.

    Article  PubMed  CAS  Google Scholar 

  6. Del Zoppo GJ, Poeck K et al (1992) Recombinant tissue plasminogen activator in acute thrombotic stroke. Ann Neurol32:78–86.

    Google Scholar 

  7. Del Zoppo GJ, Pessin MS, Mori E, Hacke W (1991) Thrombolytic intervention in acute thrombotic and embolic stroke. Semin Neurol 11:368–384.

    Article  PubMed  Google Scholar 

  8. Del Zoppo GJ (1995) Acute stroke–on the threshold of a therapy. N Engl J Med 333:1632–1633.

    Article  PubMed  Google Scholar 

  9. Del Zoppo GJ, Higashida RT, Furlan AJ, Pessin MS, Rowley HA, Gent M (1998) PROACT: a phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. PROACT Investigators. Prolyse in acute cerebral thromboembolism. Stroke 29:4–11.

    Article  PubMed  Google Scholar 

  10. Hacke W, Zeumer H, Ferbert A et al (1988) Intra-arterial thrombolytic therapy improves outcome in patients with acute vertebrobasilar occlusive disease. Stroke 19:1216–212.

    Article  PubMed  CAS  Google Scholar 

  11. Hacke W, Kaste M, Fieschi C et al (1995) Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke: the European Cooperative Acute Stroke Study (ECASS). J Am Med Assoc 274:1017–1025.

    Article  CAS  Google Scholar 

  12. National Institute of Neurological Disorders for Stroke rt-PA Stroke Study (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1587.

    Article  Google Scholar 

  13. NINDS Stroke Study Group (1997) Effect of rt-PA on ischemic lesion size by computed tomography. Preliminary results from the NINDS rt-PA Stroke Trial. Stroke 28:2109–2118.

    Google Scholar 

  14. Sussman BJ, Fitch TS (1958) Thrombolysis with fibrinolysis in cerebral arterial occlusion. J Am Med Assoc 167:1705–1709.

    Article  PubMed  CAS  Google Scholar 

  15. Hacke W, Kaste M, Bluhmki E et al (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359:1317–1329.

    Article  PubMed  CAS  Google Scholar 

  16. Von Kummer R, Allen KL, Holle R et al (1997) Acute stroke: usefulness of early CT findings before thrombolytic therapy. Radiology 205:327–333.

    Google Scholar 

  17. Lev MH, Nichols SJ (2000) Computed tomographic angiopgraphy and computed tomographic perfusion imaging of hyperacute stroke. Top Magn Reson Imaging 11:273–287.

    Article  PubMed  CAS  Google Scholar 

  18. Lev MH, Farkas J, Rodriguez VR et al (2001) CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr 25:520–528.

    Article  PubMed  CAS  Google Scholar 

  19. Esteban JM, Cervera V (2004) Perfusion CT and angio CT in the assessment of acute stroke. Neuroradiology 46:705–715.

    Article  PubMed  CAS  Google Scholar 

  20. Garg N, Eshkar N, Tanenbaum L et al (2004) Computed tomography angiographic correlates of early computed tomography signs in acute ischemic stroke. J Neuroimag 14:242–245.

    Google Scholar 

  21. Chuang YM, Chao AC, Teng MM et al (2003) Use of CT angiography in patient selection for thrombolytic therapy. Am J Emerg Med 21:167–172.

    Article  PubMed  Google Scholar 

  22. Cullen SP, Symons SP, Hunter G et al (2002) Dynamic contrast-enhanced computed tomography of acute ischemic stroke: CTA and CTP. Semin Roentgenol 37:192–205.

    Article  PubMed  Google Scholar 

  23. Smith WS, Roberts HC, Chuang NA et al (2003) Safety and feasibility of a CT protocol for acute stroke: combined CT, CT angiography, and CT perfusion imaging in 53 consecutive patients. Am J Neuroradiol 24:688–690.

    PubMed  Google Scholar 

  24. Verro P, Tanenbaum LN, Borden NM, Sen S, Eshkar N (2002) CT angiography in acute ischemic stroke: preliminary results. Stroke 33:276–278.

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz RB (1995) Helical (spiral) CT in neuroradiologic diagnosis (review; 8 refs). Radiol Clin North Am 33:981–995.

    Google Scholar 

  26. Lev MH, Ackerman RH, Lustrin ES et al (1995) Two dimensional spiral CT angiography in carotid occlusive disease: measurement of residual lumen diameter with ultrasound correlation. Proceedings of the 33rd Annual Meeting of the American Society of Neuroradiology, Chicago, IL.

    Google Scholar 

  27. Lev MH, Ackerman RH, Lustrin ES, Brown JH (1995) A procedure for accurate spiral CT angiographic measurement of lumenal diameter. Proceedings of the 81st Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago, IL.

    Google Scholar 

  28. Silverman PM, Kalendar WA, Hazle JD (2001) Common terminology for single and multislice helical CT. Am J Radiol 176:1135–1136.

    CAS  Google Scholar 

  29. Fox SH, Tanenbaum LN, Ackelsberg S (1998) Future directions in CT technology. Neuroimag Clin North Am 8:497–513.

    CAS  Google Scholar 

  30. Napoli A, Fleischmann D, Chan FP et al (2004) Computed tomography angiography: state-of-the-art imaging using multidetector-row technology. J Comput Assist Tomogr 28:S32–S45.

    Article  PubMed  Google Scholar 

  31. Rydberg J, Bukwalter KA, Caldemeyer KS et al (2000) Multisection CT: scanning techniques and clinical applications. Radiographics 20:1787–1806.

    PubMed  CAS  Google Scholar 

  32. NRC Committee on the Biological Effects of Ionizing Radiation BV (1990) In: Health effects of exposure to low levels of ionizing radiation. National Academy Press, Washington DC.

    Google Scholar 

  33. Wall BF, Hart D (1997) Revised radiation doses for typical X-ray examinations. Report on a recent review of doses to patients from medical X-ray examinations in the UK by NRPB. National Radiological Protection Board. Br J Radiol 70:437–439.

    CAS  Google Scholar 

  34. McCollough CH, Schueler BA (2000) Calculation of effective dose. Med Phys 27:828–837.

    Article  PubMed  CAS  Google Scholar 

  35. Jucius RA, Kambic GX (1980) Measurements of computed tomography x-ray fields utilizing the partial volume effect. Med Phys 7:379–382.

    Article  PubMed  CAS  Google Scholar 

  36. Kalendar WA, Wolf H, Suess C (1999) Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Med Phys 26:2248–2253.

    Google Scholar 

  37. Kalendar WA, Prokop M (2001) 3D CT angiography. Crit Rev Diagn Imaging 42:1–28.

    Google Scholar 

  38. Nickoloff EL, Alderson PO (2001) Radiation exposures to patients from CT: reality, public perception, and policy. Am J Roentgenol 177:285–287.

    CAS  Google Scholar 

  39. Ertl-Wagner BB, Hoffmann RT, Bruning R (2004) Multidetector row CT angiography of the brain at various kilovoltage settings. Radiology 231:528–535.

    Article  PubMed  Google Scholar 

  40. Kalra MK, Maher MM, Saini S (2004) Radiation exposure and projected risks with multidetector-row computed tomography scanning: clinical strategies and technologic developments for dose reduction. J Comput Assist Tomogr 28:S46–S49.

    Article  PubMed  Google Scholar 

  41. Kendall BE, Pullicino P (1980) Intravascular contrast injection in ischaemic lesions. II. Effect on prognosis. Neuroradiology 19(5):241–243.

    CAS  Google Scholar 

  42. Doerfler A et al (1998) Are iodinated contrast agents detrimental in acute cerebral ischemia? An experimental study in rats. Radiology 206(1):211–217.

    PubMed  CAS  Google Scholar 

  43. Han JK et al (2000) Factors influencing vascular and hepatic enhancement at CT: experimental study on injection protocol using a canine model. J Comput Assist Tomogr 24(3):400–406.

    Article  PubMed  CAS  Google Scholar 

  44. Bluemke DA, Fishman EK, Anderson JH (1995) Effect of contrast concentration on abdominal enhancement in the rabbit: spiral computed tomography evaluation. Acad Radiol 2(3):226–231.

    Article  PubMed  CAS  Google Scholar 

  45. Morcos SK, Thomsen HS, Webb JA (1999) Contrast-media-induced nephrotoxicity: a consensus report. Contrast Media Safety Committee, European Society of Urogenital Radiology (ESUR). Eur Radiol 9(8):1602–1613.

    Google Scholar 

  46. Morcos SK (1998) Contrast media-induced nephrotoxicity–questions and answers. Br J Radiol 71(844):357–365.

    PubMed  CAS  Google Scholar 

  47. Aspelin P et al (2003) Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med 348(6):491–499.

    Article  PubMed  CAS  Google Scholar 

  48. Pugh ND (1996) Haemodynamic and rheological effects of contrast media: the role of viscosity and osmolality. Eur Radiol 6 [suppl 2]:S13–S15.

    Google Scholar 

  49. Krol AL, Dzialowski I, Roy J et al (2007) Incidence of radiocontrast nephropathy in patients undergoing acute stroke computed tomography angiography. Stroke 38:2364–2366. Erratum in: Stroke 38:e97.

    Google Scholar 

  50. Dittrich R, Akdeniz S, Kloska SP et al (2007) Low rate of contrast-induced Nephropathy after CT perfusion and CT angiography in acute stroke patients. J Neurol 254:1491–1497.

    Article  PubMed  CAS  Google Scholar 

  51. Langner S, Stumpe S, Kirsch M et al (2008) No increased risk for contrast-induced nephropathy after multiple CT perfusion studies of the brain with a nonionic, dimeric, iso-osmolal contrast medium. Am J Neuroradiol 29:1525–1529.

    Article  PubMed  CAS  Google Scholar 

  52. Hopyan JJ, Gladstone DJ, Mallia G et al (2008) Renal safety of CT angiography and perfusion imaging in the emergency evaluation of acute stroke. Am J Neuroradiol 29:1826–1830.

    Article  PubMed  CAS  Google Scholar 

  53. Oleinik A, Romero JM, Schwab K et al (2009) CT angiography for intracerebral hemorrhage does not increase risk of acute nephropathy. Stroke 40:2393–2397.

    Article  PubMed  Google Scholar 

  54. Henson JW et al (2004) Gadolinium-enhanced CT angiography of the circle of Willis and neck. Am J Neuroradiol 25(6):969–972.

    PubMed  Google Scholar 

  55. Schoellnast H et al (2003) Abdominal multidetector row computed tomography: reduction of cost and contrast material dose using saline flush. J Comput Assist Tomogr 27(6):847.

    Article  PubMed  Google Scholar 

  56. Schoellnast H et al (2004) Aortoiliac enhancement during computed tomography angiography with reduced contrast material dose and saline solution flush: influence on magnitude and uniformity of the contrast column. Invest Radiol 39(1):20–26.

    Article  PubMed  Google Scholar 

  57. Bader TR, Prokesch RW, Grabenwoger F (2000) Timing of the hepatic arterial phase during contrast-enhanced computed tomography of the liver: assessment of normal values in 25 volunteers. Invest Radiol 35(8):486–492.

    Article  PubMed  CAS  Google Scholar 

  58. Cademartiri F et al (2002) Parameters affecting bolus geometry in CTA: a review. J Comput Assist Tomogr 26(4):598–607.

    Article  PubMed  Google Scholar 

  59. Hopper KD et al (1997) Thoracic spiral CT: delivery of contrast material pushed with injectable saline solution in a power injector. Radiology 205(1):269–271.

    PubMed  CAS  Google Scholar 

  60. Haage P et al (2000) Reduction of contrast material dose and artifacts by a saline flush using a double power injector in helical CT of the thorax. AJR Am J Roentgenol 174(4):1049.

    PubMed  CAS  Google Scholar 

  61. Kopka L et al (1995) Parenchymal liver enhancement with bolus-triggered helical CT: preliminary clinical results. Radiology 195(1):282–284.

    PubMed  CAS  Google Scholar 

  62. Paulson EK et al (1998) Helical liver CT with computer-assisted bolus-tracking technology: is it possible to predict which patients will not achieve a threshold of enhancement? Radiology 209(3):787–792.

    PubMed  CAS  Google Scholar 

  63. Shimizu T et al (2000) Helical CT of the liver with computer-assisted bolus-tracking technology: scan delay of arterial phase scanning and effect of flow rates. J Comput Assist Tomogr 24(2):219–223.

    Article  PubMed  CAS  Google Scholar 

  64. Puskas Z, Schuierer G (1996) Determination of blood circulation time for optimizing contrast medium administration in CT angiography. Radiologe 36(9):750–757.

    Article  PubMed  CAS  Google Scholar 

  65. Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic contrast medium enhancement at CT, part II. Effect of reduced cardiac output in a porcine model. Radiology 207(3):657–662.

    CAS  Google Scholar 

  66. Rubin GD et al (1998) Measurement of the aorta and its branches with helical CT. Radiology 206(3):823–829.

    PubMed  CAS  Google Scholar 

  67. Rubin GD et al (1993) Three-dimensional spiral computed tomographic angiography: an alternative imaging modality for the abdominal aorta and its branches. J Vasc Surg 18(4):656–664; discussion 665.

    Google Scholar 

  68. Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic contrast medium enhancement at CT, part I. Prediction with a computer model. Radiology 207(3):647–655.

    CAS  Google Scholar 

  69. Bae KT, Tran HQ, Heiken JP (2000) Multiphasic injection method for uniform prolonged vascular enhancement at CT angiography: pharmacokinetic analysis and experimental porcine model. Radiology 216(3):872–880.

    PubMed  CAS  Google Scholar 

  70. Bae KT, Tran HQ, Heiken JP (2004) Uniform vascular contrast enhancement and reduced contrast medium volume achieved by using exponentially decelerated contrast material injection method. Radiology 231(3):732–736.

    Article  PubMed  Google Scholar 

  71. Fleischmann D, Hittmair K (1999) Mathematical analysis of arterial enhancement and optimization of bolus geometry for CT angiography using the discrete Fourier transform. J Comput Assist Tomogr 23(3):474–484

    Article  PubMed  CAS  Google Scholar 

  72. Fleischmann D et al (2000) Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology 214(2):363–371.

    PubMed  CAS  Google Scholar 

  73. Lev MH, Farkas J, Gemmete JJ et al (1999) Acute stroke: improved nonenhanced CT detection–benefits of soft-copy interpretation by using variable window width and center level settings. Radiology 213:150–155.

    PubMed  CAS  Google Scholar 

  74. Dix JA, Evans AJ, Kallmes DF, Sobel A, Phillips CD (1997) Accuracy and precision of CT angiography in a model of the carotid artery bifurcation. Am J Neuroradiol 18:409–415.

    PubMed  CAS  Google Scholar 

  75. Napel S et al (1992) CT angiography with spiral CT and maximum intensity projection. Radiology 185(2):607–610.

    PubMed  CAS  Google Scholar 

  76. Rubin GD et al (1994) Spiral CT of renal artery stenosis: comparison of three-dimensional rendering techniques. Radiology 190(1):181–189.

    PubMed  CAS  Google Scholar 

  77. Vieco PT, Morin EE III, Gross CE (1996) CT angiography in the examination of patients with aneurysm clips. Am J Neuroradiol 17(3):455–457.

    PubMed  CAS  Google Scholar 

  78. Kuszyk BS et al (1995) CT angiography with volume rendering: imaging findings. Am J Roentgenol 165(2):445–448.

    CAS  Google Scholar 

  79. Hunter GJ, Hamberg LM, Ponzo JA et al (1998) Assessment of cerebral perfusion and arterial anatomy in hyperacute stroke with three-dimensional functional CT: early clinical results. Am J Neuroradiol 19:29–37.

    PubMed  CAS  Google Scholar 

  80. Kucinski T et al (2003) Collateral circulation is an independent radiological predictor of outcome after thrombolysis in acute ischaemic stroke. Neuroradiology 45(1):11–18.

    PubMed  CAS  Google Scholar 

  81. Tan IY et al (2009) CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. Am J Neuroradiol 30:525–531.

    Article  PubMed  CAS  Google Scholar 

  82. Maas MB et al (2009) Collateral vessels on CT angiography predict outcome in acute ischemic stroke. Stroke 40:3001–3005.

    Article  PubMed  Google Scholar 

  83. Lev MH et al (2001) CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr 25(4):520–528.

    Article  PubMed  CAS  Google Scholar 

  84. Puetz V et al (2008) Intracranial thrombus extent predicts clinical outcome, final infarct size and hemorrhagic transformation in ischemic stroke: the clot burden score. Int J Stroke 3:230–236.

    Article  PubMed  Google Scholar 

  85. Barreto AD et al (2008) Thrombus burden is associated with clinical outcome after intra-arterial therapy for acute ischemic stroke. Stroke 39:3231–3235.

    Article  PubMed  Google Scholar 

  86. Wolpert SM et al (1993) Neuroradiologic evaluation of patients with acute stroke treated with recombinant tissue plasminogen activator. The rt-PA Acute Stroke Study Group. Am J Neuroradiol 14(1):3–13.

    PubMed  CAS  Google Scholar 

  87. Wildermuth S et al (1998) Role of CT angiography in patient selection for thrombolytic therapy in acute hemispheric stroke. Stroke 29(5):935–938.

    Article  PubMed  CAS  Google Scholar 

  88. Kucinski T et al (1998) The predictive value of early CT and angiography for fatal hemispheric swelling in acute stroke. Am J Neuroradiol 19(5):839–846.

    PubMed  CAS  Google Scholar 

  89. Zivin JA (1998) Factors determining the therapeutic window for stroke. Neurology 50(3):599–603.

    Article  PubMed  CAS  Google Scholar 

  90. Schramm P et al (2002) Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke 33(10):2426–2432.

    Article  PubMed  Google Scholar 

  91. Schwamm LH, Rosenthal ES, Swap CJ et al (2005) Hypo­attenuation on CT angiographic source images predicts risk of intracerebral hemorrhage and outcome after intra-arterial reperfusion therapy. Am J Neuroradiol 26:1798–1803.

    PubMed  Google Scholar 

  92. Puetz V, Sylaja PN, Coutts SB et al (2008) Extent of hypoattenuation on CT angiography source images predicts functional outcome in patients with basilar artery occlusion. Stroke 39:2485–2490.

    Article  PubMed  Google Scholar 

  93. Schaefer PW, Yoo AJ, Bell D et al (2008) CT angiography-source image hypoattenuation predicts clinical outcome in posterior circulation strokes treated with intra-arterial therapy. Stroke 39:3107–3109.

    Article  PubMed  Google Scholar 

  94. Lev MH et al (2003) Total occlusion versus hairline residual lumen of the internal carotid arteries: accuracy of single section helical CT angiography. Am J Neuroradiol 24(6):1123–1129.

    PubMed  Google Scholar 

  95. Chen CJ, Lee TH, Hsu HL et al (2004) Multi-Slice CT angiography in diagnosing total versus near occlusions of the internal carotid artery: comparison with catheter angiography. Stroke 35:83–85.

    Article  PubMed  CAS  Google Scholar 

  96. Bartlett ES, Walters TD, Symons SP, Fox AJ (2006) Diagnosing carotid stenosis near-occlusion by using CT angiography. Am J Neuroradiol 27:632–637.

    PubMed  CAS  Google Scholar 

  97. Nguyen-Huynh MN, Lev MH, Rordorf G (2003) Spon­taneous recanalization of internal carotid artery occlusion. Stroke 34(4):1032–1034.

    Article  PubMed  Google Scholar 

  98. Debernardi S et al (2004) CT angiography in the assessment of carotid atherosclerotic disease: results of more than two years’ experience. Radiol Med (Torino) 108(1–2):116–127.

    Google Scholar 

  99. Silvennoinen HM, Ikonen S, Soinne L et al (2007) CT angiographic analysis of carotid artery stenosis: comparison of manual assessment, semiautomatic vessel analysis, and digital subtraction angiography. Am J Neuroradiol 28:97–103.

    Article  PubMed  CAS  Google Scholar 

  100. Puchner S, Popovic M, Wolf F et al (2009) Multidetector CTA in the quantification of internal carotid artery stenosis: value of different reformation techniques and axial source images compared with selective carotid arteriography. J Endovasc Ther 16:336–342.

    Article  PubMed  Google Scholar 

  101. Provenzale JM (1995) Dissection of the internal carotid and vertebral arteries: imaging features. Am J Roentgenol 165(5):1099–1104.

    CAS  Google Scholar 

  102. Adams HP Jr et al (1995) Ischemic stroke in young adults. Experience in 329 patients enrolled in the Iowa Registry of stroke in young adults. Arch Neurol 52(5):491–495.

    Google Scholar 

  103. Bogousslavsky J, Regli F (1987) Ischemic stroke in adults younger than 30 years of age. Cause and prognosis. Arch Neurol 44(5):479–482.

    Article  CAS  Google Scholar 

  104. Oelerich M et al (1999) Craniocervical artery dissection: MR imaging and MR angiographic findings. Eur Radiol 9(7):1385–1391.

    Article  PubMed  CAS  Google Scholar 

  105. Klingebiel R, Siebert E, Diekmann S et al (2009) 4-D Imaging in cerebrovascular disorders by using 320-slice CT: feasibility and preliminary clinical experience. Acad Radiol 16:123–129.

    Article  PubMed  Google Scholar 

  106. Siebert E, Bohner G, Dewey M et al (2009) 320-slice CT neuroimaging: initial clinical experience and image quality evaluation. Br J Radiol 82:561–570.

    Article  PubMed  CAS  Google Scholar 

  107. Siebert E, Bohner G, Dewey M et al (2009) Letter to the editor concerning “320-slice CT neuroimaging: initial clinical experience and image quality evaluation” (Siebert E et al: Br J Radiol 2009;82:561-70). Br J Radiol 82:615.

    Article  PubMed  CAS  Google Scholar 

  108. Zaidat O et al (2002) The utility of ultrafast cardiac cycle gated and contrasted spiral computerized axial chest tomography in evaluation of patients with acute stroke and comparison with transesophageal echocardiography. Proceedings of the 27th International Stroke Conference. American Stroke Association, San Antonio, TX.

    Google Scholar 

  109. Hur J, Kim YJ, Lee HJ et al (2009) Cardiac computed tomographic angiography for detection of cardiac sources of embolism in stroke patients. Stroke 40:2073–2078.

    Article  PubMed  Google Scholar 

  110. Shapira MY et al (1999) Esophageal perforation after transesophageal echocardiogram. Echocardiography 16(2):151–154.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier M. Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Almandoz, J.E.D., Kamalian, S., González, R.G., Lev, M.H., Romero, J.M. (2011). Imaging of Acute Ischemic Stroke: Stroke CT Angiography (CTA). In: González, R., Hirsch, J., Lev, M., Schaefer, P., Schwamm, L. (eds) Acute Ischemic Stroke. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12751-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12751-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12750-2

  • Online ISBN: 978-3-642-12751-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics