Skip to main content

Approximate Geometric Ellipsoid Fitting: A CG-Approach

  • Conference paper
  • First Online:
Recent Advances in Optimization and its Applications in Engineering

Summary

The problem of geometric ellipsoid fitting is considered. In connection with a conjugate gradient procedure a suitable approximation for the Euclidean distance of a point to an ellipsoid is used to calculate the fitting parameters. The approach we follow here ensures optimization over the set of all ellipsoids with codimension one rather than allowing for different conics as well. The distance function is analyzed in some detail and a numerical example supports our theoretical considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. L. Bookstein. Fitting conic sections to scattered data. Computer Graphics and Image Processing, 9:56–71, 1981.

    Article  Google Scholar 

  2. P. Ciarlini, M. Cox, F. Pavese, and D. Richter, editors. Advanced mathematical tools in metrology II. Proceedings of the 2nd international workshop, Oxford, UK, September 27–30, 1995.Singapore: World Scientific, 1996.

    MATH  Google Scholar 

  3. F. Deutsch. Best approximation in inner product spaces. NY Springer, 2001.

    Google Scholar 

  4. A. Fitzgibbon, M. Pilu, and R. B. Fisher. Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell., 21(5):476–480, 1999.

    Article  Google Scholar 

  5. A. Forbes. Generalised regression problems in metrology. Numer. Algorithms, 5(1-4):523–533, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  6. W. Gander, G. Golub, and R. Strebel. Least-squares fitting of circles and ellipses. BIT, 34(4):558–578, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Golub and C. F. Van Loan. Matrix computations. 3rd ed. Baltimore: The Johns Hopkins Univ. Press, 1996.

    MATH  Google Scholar 

  8. K. Kanatani. Statistical optimization for geometric computation: theory and practice. Amsterdam: North-Holland, 1996.

    MATH  Google Scholar 

  9. K. Kanatani. Statistical optimization for geometric fitting: theoretical accuracy bound and high order error analysis. Int. J. of Comp. Vision, 80:167–188, 2008.

    Article  Google Scholar 

  10. I. Markovsky, A. Kukush, and S. Van Huffel. Consistent least squares fitting of ellipsoids. Numer. Math., 98(1):177–194, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  11. M.Baeg, H. Hashimoto, F. Harashima, and J. Moore. Pose estimation of quadratic surface using surface fitting technique. In Proc. of the International Conference on Intelligent Robots and Systems, vol. 3, pages 204–209, 1995.

    Google Scholar 

  12. J. Nocedal and S. J.Wright. Numerical optimization.New York: Springer, 1999.

    MATH  Google Scholar 

  13. E. Rimon and S. P. Boyd. Obstacle collision detection using best ellipsoid fit. J. Intell. Robotics Syst., 18(2):105–126, 1997.

    Article  MATH  Google Scholar 

  14. P. D. Sampson. Fitting conic sections to ’very scattered’ data: An iterative refinement of the Bookstein algorithm. Computer Graphics and Image Processing, 18(1):97–108, 1982.

    Article  Google Scholar 

  15. S. Shklyar, A. Kukush, I. Markovsky, and S. van Huffel. On the conic section fitting problem. J. Multivariate Anal., 98(3):588–624, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Stoer. On the relation between quadratic termination and convergence properties of minimization algorithms. Numer. Math., 28:343–366, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Strebel, D. Sourlier, and W. Gander. A comparison of orthogonal least squares fitting in coordinate metrology. Van Huffel, Sabine (ed.), Recent advances in total least squares techniques and errors-in-variables modeling. Philadelphia: SIAM. 249-258, 1997.

    Google Scholar 

  18. P. Thomas, R. Binzel, M. Gaffey, B. Zellner, A. Storrs, and E. Wells. Vesta: Spin pole, size, and shape from Hubble Space Telescope images. Icarus, 128, 1997.

    Google Scholar 

  19. J. Varah. Least squares data fitting with implicit functions. BIT, 36(4):842–854, 1996.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported in parts by CoTeSys - Cognition for Technical Systems, Cluster of Excellence, funded by Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kleinsteuber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer -Verlag Berlin Heidelberg

About this paper

Cite this paper

Kleinsteuber, M., Hüper, K. (2010). Approximate Geometric Ellipsoid Fitting: A CG-Approach. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds) Recent Advances in Optimization and its Applications in Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12598-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12598-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12597-3

  • Online ISBN: 978-3-642-12598-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics