Skip to main content

Lessons from Natural Cold-Induced Dormancy to Organ Preservation in Medicine and Biotechnology: From the “Backwoods to the Bedside”

  • Chapter
  • First Online:

Part of the book series: Topics in Current Genetics ((TCG,volume 21))

Abstract

Hypothermia is a powerful modulator of all life processes, and this has been harnessed over the past 50 years in clinical sciences where tissues or organs for transplantation need to be stored outside the body for periods of time. However for human organs (as an obligate homoeothermic), cooling alone cannot provide sufficient time for the clinical logistics of transplantation, and a series of interventions to further control metabolism have been developed empirically. In retrospect, it can be seen that these approaches mimic to some degree the ways in which cold tolerance in the natural world has developed in evolutionary terms. This chapter reviews the history and the current state of the art of applied hypothermic preservation, and compares and contrasts what is known about natural cold tolerance, highlighting areas for further research and development to meet the challenges for organ and tissue preservation in the next few years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alijani MR, Cutler JA, Del Valle C, Morres D, Fawzy A, Pechan B, Helfrich G (1985) Single donor cold storage versus machine perfusion in cadaver kidney preservation. Transplantation 40:659–661

    PubMed  CAS  Google Scholar 

  • Andrews M (2007) Advances in molecular biology of hibernation in mammals. BioEssays 29:431–440

    PubMed  CAS  Google Scholar 

  • Arrhenius SA (1915) Quantitative laws in biological chemistry. G Bell & Sons, London

    Google Scholar 

  • Baicu SC, Taylor MJ, Brockbank KG (2006) The role of preservation solution on acid-base regulation during machine perfusion of kidneys. Clin Transplant 20:113–121

    PubMed  Google Scholar 

  • Bartels-Stringer M, Wetzels JF, Wouterse AC, Steenbergen E, Russel FG, Kramers C (2005) Iron chelators do not reduce cold-induced cell injury in the isolated perfused rat kidney model. Nephrol Dial Transplant 20:2646–2653

    PubMed  CAS  Google Scholar 

  • Belzer FO, May R, Berry M, Lee JC (1970) Short term preservation of porcine livers. J Surg Res 10:55–61

    PubMed  CAS  Google Scholar 

  • Bennett LE, Glascock R, Breen T, Ellison M, Daily OP (1993) Organ donation in the United States: 1988 through 1992. Clin Transpl 5:85–93

    Google Scholar 

  • Bessems M, Doorschodt BM, van Vliet AK, van Gulik TM (2005a) Improved machine perfusion preservation of the non-heart-beating donor rat liver using polysol: a new machine perfusion preservation solution. Liver Transpl 11:1379–1388

    PubMed  Google Scholar 

  • Bessems M, Doorschodt BM, van Marle J, Vreeling H, Meijer AJ, van Gulik TM (2005b) Improved rat liver preservation by hypothermic continuous machine perfusion using polysol, a new, enriched preservation solution. Liver Transpl 11:539–546

    PubMed  Google Scholar 

  • Bickford RG, Winton FR (1937) The influence of temperature on the isolated kidney of the dog. J Physiol (Lond) 89:198–219

    CAS  Google Scholar 

  • Bickler P, Buck L (2007) Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol 69:145–170

    PubMed  CAS  Google Scholar 

  • Blackstone E, Roth MB (2007) Suspended animation-like state protects mice from lethal hypoxia. Shock 27:370–372

    PubMed  CAS  Google Scholar 

  • Blackstone E, Morrison M, Roth MB (2005) H2S induces a suspended animation-like state in mice. Science 308:518

    PubMed  CAS  Google Scholar 

  • Borgmann U (1974) A theoretical description of biological rates. J Theor Biol 45:171–182

    PubMed  CAS  Google Scholar 

  • Boyle R (1683) New experiments and observations touching cold. R. Davis, London

    Google Scholar 

  • Breton S, Brown D (1998) Cold-induced microtubule disruption and relocalization of membrane proteins in kidney epithelial cells. J Am Soc Nephrol 9:155–166

    PubMed  CAS  Google Scholar 

  • Brodie T (1903) The perfusion of surviving organs. J Physiol (Lond) 29:266–275

    CAS  Google Scholar 

  • Brooks SP, Storey K (1994) cGMP-stimulated protein kinase phosphorylates protein kinase in an anoxia-tolerant marine mollusc. J Comp Physiol B 160:309–316

    Google Scholar 

  • Calne RY, Pegg DE, Pryse-Davies J, Brown FL (1963) Renal preservation by ice-cooling: an experimental study relating to kidney transplantation from cadavers. Br Med J 2:651–655

    PubMed  CAS  Google Scholar 

  • Carrel A, Lindbergh CA (1935) The culture of whole organs. Science 81:621–623

    PubMed  CAS  Google Scholar 

  • Carrel A, Lindbergh CA (1938) The culture of organs. Hoeber, NewYork

    Google Scholar 

  • Casillas-Ramírez A, Mosbah IB, Ramalho F, Roselló-Catafau J, Peralta C (2006) Past and future approaches to ischemia-reperfusion lesion associated with liver transplantation. Life Sci 79:1181–1194

    Google Scholar 

  • Changani KK, Fuller BJ, Bryant DJ, Bell JD, Ala-Korpela M, Taylor-Robinson SD, Moore DP, Davidson BR (1997) Non-invasive assessment of ATP regeneration potential of the preserved donor liver. A 31P MRS study in pig liver. J Hepatol 26:336–342

    PubMed  CAS  Google Scholar 

  • Changani KK, Davidson BR, Bell J, Taylor-Robinson S, Fuller B (1998) Enhanced energy metabolism at hypothermia following addition of a prostacyclin derivative in porcine liver. CryoLetters 19:131–140

    CAS  Google Scholar 

  • Churchill TA, Cheetham KM, Fuller BJ (1994) Glycolysis and energy metabolism in rat liver during warm and cold ischemia: evidence of an activation of the regulatory enzyme phosphofructokinase. Cryobiology 31:441–452

    PubMed  CAS  Google Scholar 

  • Collins GM, Bravo-Shugarman M, Terasaki PI (1969) Kidney preservation for transportation. Initial perfusion and 30 hours’ ice storage. Lancet 2:1219–1222

    PubMed  CAS  Google Scholar 

  • Collins L, Sawyer GJ, Zhang XH, Gustafsson K, Fabre JW (2000) In vitro investigation of factors important for the delivery of an integrin-targeted nonviral DNA vector in organ transplantation. Transplantation 69:1168–1176

    PubMed  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM, Anchordoguy TJ, Drobnis E (1989) Lipid phase transitions measured in intact cells with Fourier transform infrared spectroscopy. Cryobiology 26:76–84

    PubMed  CAS  Google Scholar 

  • Daemen MA, de Vries B, Buurman WA (2003) Apoptosis and inflammation in renal reperfusion injury. Transplantation 73:1693–1700

    Google Scholar 

  • Dutkowski P, Schönfeld S, Heinrich T, Watzka M, Winkelbach V, Krysiak M, Odermatt B, Junginger T (1999) Reduced oxidative stress during acellular reperfusion of the rat liver after hypothermic oscillating perfusion. Transplantation 68:44–50

    PubMed  CAS  Google Scholar 

  • Dutkowski P, Graf R, Clavien PA (2006) Rescue of the cold preserved rat liver by hypothermic oxygenated machine perfusion. Am J Transplant 6:903–912

    PubMed  CAS  Google Scholar 

  • Ellermann J, Gewiese B, David H, Stiller D, Plötz M, Wolf KJ, Lüning M (1992) Electron microscopic and 31-P NMR studies of ischemic injured rat livers during preservation and reflow. Exp Toxicol Pathol 44:245–253

    PubMed  CAS  Google Scholar 

  • Faenza A, Catena F, Nardo B, Montalti R, Capocasale E, Busi N, Boggi U, Vistoli F, Di Naro A, Albertazzi A, Mosca F, Cavallari A (2001) Kidney preservation with university of Wisconsin and Celsior solution: a prospective multicenter randomized study. Transplantation 72:1274–1277

    PubMed  CAS  Google Scholar 

  • Farr DA, Fuhrman FA (1965) Role of diffusion of oxygen in the respiration of tissues at different temperatures. J Appl Physiol 20:637–646

    PubMed  CAS  Google Scholar 

  • Feltkamp CA, van der Waerden AW (1982) Low temperature -induced displacement of cholesterol and intramembrane particles in nuclear membranes of mouse leukemia cells. Cell Biol Int Rep 6:137–145

    PubMed  CAS  Google Scholar 

  • Fuhrman FA (1956) Oxygen consumption of mammalian tissues at reduced temperatures. Proc Natl Acad Sci USA 451:50–51

    Google Scholar 

  • Fujita S, Hamamoto I, Nakamura K, Tanaka K, Ozawa K (1993a) Evaluation of oxygen necessity during hypothermic liver perfusion. Nippon Geka Hokan 62:228–240

    PubMed  CAS  Google Scholar 

  • Fujita S, Hamamoto I, Nakamura K, Tanaka K, Ozawa K (1993b) Isolated perfusion of rat livers: effect of temperature on O2 consumption, enzyme release, energy store, and morphology. Nippon Geka Hokan 62:58–70

    PubMed  CAS  Google Scholar 

  • Fuller BJ (1999) Organ preservation: the profit and loss account of using hypothermia to maintain viability. Transplant Rev 13:55–66

    CAS  Google Scholar 

  • Fuller BJ (2003) Gene expression in response to low temperatures in mammalian cells: a review of current ideas. CryoLetters 24:95–102

    PubMed  CAS  Google Scholar 

  • Fuller BJ, So P-W (2001) Hepatic uptake of solutes from the preservation solution during hypothermic storage: a (1)H NMR study in rat liver. Cryobiology 42:307–313

    PubMed  Google Scholar 

  • Fuller BJ, Marley S, Green CJ (1985) Gluconeogenesis in stored kidneys from normal and cold-acclimated rats. CryoLetters 6:91–98

    CAS  Google Scholar 

  • Fuller BJ, Gower J, Green CJ (1988) Free radical damage and organ preservation: fact or fiction? A review of the interrelationship between oxidative stress and physiological ion disbalance. Cryobiology 25:377–393

    PubMed  CAS  Google Scholar 

  • Fuller BJ, Busza AL, Proctor E (1990) Possible resuscitation of liver function by hypothermic reperfusion in vitro after prolonged (24-hour) cold preservation – a 31P NMR study. Transplantation 50:511–513

    PubMed  CAS  Google Scholar 

  • Halloran PF, Aprile M (1987) A randomised prospective trial of cold-storage versus pulsatile perfusion for cadaveric kidney preservation. Transplantation 43:827–831

    PubMed  CAS  Google Scholar 

  • Hansen TN, D’Alessandro A, Southard JH (1997) Reduced renal vascular injury following warm ischemia and preservation by hypothermic machine perfusion. Transplant Proc 29:3577–3579

    PubMed  CAS  Google Scholar 

  • Heilbrunn LV (1937) An outline of general physiology. WB Saunders, Philadelphia, USA

    Google Scholar 

  • Henry ML, Sommer B, Ferguson R (1988) M. Improved immediate function of renal allografts with Belzer perfusate. Transplantation 45:73–75

    PubMed  CAS  Google Scholar 

  • Hobbs KE, Hunt A, Palmer D, Badrick F, Morris A, Mitra S, Peacock J, Immelman E, Riddell AG (1968) Hypothermic low flow liver perfusion as a means of porcine hepatic storage for 6 hours. Br J Surg 55:696–703

    PubMed  CAS  Google Scholar 

  • Hochachka P (1986) Defense strategies against hypoxia and hypothermia. Science 231:234–241

    PubMed  CAS  Google Scholar 

  • Hochachka PW, Buck LT, Doll CJ, Land SC (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA 93:9493–9498

    PubMed  CAS  Google Scholar 

  • Holden C, Storey K (1997) Second messenger and c-AMP dependent protein kinase responses to dehydration and anoxia stress in frogs. J Comp Physiol B 167:305–312

    PubMed  CAS  Google Scholar 

  • Hume DM, Merrill J, Miller BF, Thorn GW (1955) Experiences with renal homotransplantation in the human: report of nine cases. J Clin Invest 34:327–382

    PubMed  CAS  Google Scholar 

  • Humphries AL, Russell R, Christopher P, Goodrich S, Stoddard L, Moretz WH (1964a) Succesful reimplantation of twenty-four-hour stored kidney to nephrectomized dog. Ann N Y Acad Sci 120:496–505

    PubMed  Google Scholar 

  • Humphries AL, Russell R, Gregory J, Carter R, Moretz WH (1964b) Hypothermic perfusion of the canine kidney for 48 hours followed by reimplantation. Am Surg 30:748–752

    PubMed  Google Scholar 

  • Humphries AL Jr, Russell R, Stoddard L, Moretz WH (1968a) Successful five-day kidney preservation. Perfusion with hypothermic, plasma. Invest Urol 5:609–618

    PubMed  Google Scholar 

  • Humphries AL, Russell R, Stoddard LD, Moretz WH (1968b) Perfusion of dog kidneys with cooled medium 199 followed by auto or allotransplantation. In: Norman JC (ed) Organ perfusion and preservation. Appleton Century Crofts, NewYork, pp 13–26

    Google Scholar 

  • Jassem W, Heaton ND (2004) The role of mitochondria in ischemia/reperfusion injury in organ transplantation. Kidney Int 66:514–517

    PubMed  CAS  Google Scholar 

  • Jassem W, Fuggle SV, Rela M, Koo DD, Heaton ND (2002) The role of mitochondria in ischemia/reperfusion injury. Transplantation 73:493–499

    PubMed  CAS  Google Scholar 

  • Johansson BW (1996) The hibernator heart – nature’s model of resistance to ventricular fibrillation. Cardiovasc Res 31:826–832

    PubMed  CAS  Google Scholar 

  • Johnson CP, Roza A, Adams MB (1990) Local procurement with pulsatile perfusion gives excellent results and minimises initial cost associated with renal transplantation. Transplant Proc 22:385

    PubMed  CAS  Google Scholar 

  • Keeler R, Swinney J, Taylor R, Uldall MB (1966) The problem of renal preservation. Br J Urol 38:653–655

    Google Scholar 

  • Kupiec-Weglinski JW, Busuttil RW (2005) Ischemia and reperfusion injury in liver transplantation. Transplant Proc 37:1653–1656

    PubMed  CAS  Google Scholar 

  • Lee CY, Jain S, Duncan H, Zhang JX, Jones J, Southard JH, Clemens M (2003) Survival transplantation of preserved non-heart-beating donor rat livers. Transplantation 76:1432–1436

    PubMed  Google Scholar 

  • Lemaster JJ, Thurman RG (1993) Hypoxia and reperfusion injury to liver. Prog Liver Dis 11:85–114

    PubMed  CAS  Google Scholar 

  • Light JA (1998) A 25 year history of kidney transplantation in the Washington Hospital Centre. In: Cecka D, Terasaki PI (eds) Chapter 13, Clinical Transplants 1998, UCLA Tissue Typing Laboratory, pp 159–168

    Google Scholar 

  • Lindell SL, Compagnon P, Mangino MJ, Southard JH (2005) UW solution for hypothermic machine perfusion of warm ischemic kidneys. Transplantation 79:1358–1361

    PubMed  Google Scholar 

  • Locke FS, Rosenheim O (1907) Contributions to the physiology of the isolated heart: the consumption of dextrose by mammalian cardiac muscle. J Physiol (Lond) 36:205–220

    CAS  Google Scholar 

  • Lockett CJ, Busza AL, Toffa SK, Proctor E, Fuller BJ (1995) Resuscitation of cardiac energy metabolism in the rabbit heart by brief hypothermic reperfusion after preservation studied by 31P NMR spectroscopy. Transpl Int 8:8–12

    PubMed  CAS  Google Scholar 

  • Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH (2005) Molecular biology of apoptosis in ischemia and reperfusion. J Invest Surg 18:335–350

    PubMed  Google Scholar 

  • Lyman CP (1982) The hibernating state. In: Willis JS, Malan A, Wang LCH (eds) Hibernation and torpor in mammals and birds. Academic Press, NewYork, pp 12–53

    Google Scholar 

  • Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and torpor in mammals and birds. Academic Press, New York

    Google Scholar 

  • McAnulty JF (1998) The effect of calcium on hypothermia-facilitated resuscitation of warm ischemic kidney tissue slices: a role for the mitochondrial permeability transition pore? Cryobiology 36:12–19

    PubMed  CAS  Google Scholar 

  • McAnulty JF, Foley JD, Reid TW, Heath TD, Waller KR, Murphy CJ (2004) Suppression of cold ischemic injury in stored kidneys by the antimicrobial peptide bactenecin. Cryobiology 49:230–240

    PubMed  CAS  Google Scholar 

  • McCabe M, Maguire DJ (2005) Effects of temperature on oxygen transport in sheets and spheres of respiring tissues. Adv Exp Med Biol 566:105–109

    PubMed  Google Scholar 

  • Merion RM, Oh H, Port F, Toledo-Pereyra LH, Turcotte JG (1991) A prospective controlled trial of cold storage versus machine perfusion preservation in cadaveric renal transplantation. Transplantation 50:230–233

    Google Scholar 

  • Milsom W, Beth Zimmer M, Harris B (1999) Regulation of cardiac rhythm in hibernating mammals. Comp Biochem Physiol 124:383–391

    CAS  Google Scholar 

  • Minor T, Sitzia M, Dombrowski F (2005) Kidney transplantation from non-heart-beating donors after oxygenated low-flow machine perfusion preservation with histidine-tryptophan-ketoglutarate solution. Transpl Int 17:707–712

    PubMed  CAS  Google Scholar 

  • Moers C, Smits JM, Maathuis MH, Treckmann J, van Gelder F, Napieralski BP, van Kasterop-Kutz M, van der Heide JJ, Squifflet JP, van Heurn E, Kirste GR, Rahmel A, Leuvenink HG, Paul A, Pirenne J, Ploeg RJ (2009) Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med 360:7–19

    PubMed  CAS  Google Scholar 

  • NHS Blood and Transplant (2008) Transplant activity in the UK: 2007–2008 http://www.organdonation.nhs.uk/ukt/

  • NHS Blood and Transplant Annual Activity Report 2008–2009, http://www.organdonation.nhs.uk/ukt/

  • Palmer JF (1825) The works of John Hunter FRS with notes. Longman, Reese, Orme, Brwon, Green & Longman, London

    Google Scholar 

  • Pegg DE (1978) An approach to hypothermic renal preservation. Cryobiology 15:1–17

    PubMed  CAS  Google Scholar 

  • Pegg D, Wusteman MC, Foreman J (1981) Metabolism of normal and ischemically injured rabbit kidneys during perfusion for 48 hours at 10 C. Transplantation 32:437–443

    PubMed  CAS  Google Scholar 

  • Peltz M, He TT, Adams GA 4th, Koshy S, Burgess SC, Chao RY, Meyer DM, Jessen ME (2005) Perfusion preservation maintains myocardial ATP levels and reduces apoptosis in an ex vivo rat heart transplantation model. Surgery 138:795–805

    PubMed  Google Scholar 

  • Pinsky DJ, Yan SF, Lawson C, Naka Y, Chen JX, Connolly ES Jr, Stern DM (1995) Hypoxia and modification of the endothelium: implications for regulation of vascular homeostatic properties. Semin Cell Biol 6:283–294

    PubMed  CAS  Google Scholar 

  • Piper HM, Meuter K, Schäfer C (2003) Cellular mechanisms of ischemia-reperfusion injury. Ann Thorac Surg 75:S644–S648

    PubMed  Google Scholar 

  • Pizzaro MD, Rodriguez JV, Mamprin M, Fuller B, Mann B, Motterlini M, Guibert E (2009) Protective effects of a carbon monoxide-releasing molecule (CORM-3) during hepatic cold preservation. Cryobiology 58:248–256

    Google Scholar 

  • Polyak MM, Arrington BO, Stubenbord WT, Kapur S, Kinkhabwala M (1999) Prostaglandin E1 influences pulsatile preservation characteristics and early graft function in expanded criteria donor kidneys. J Surg Res 85:17–25

    PubMed  CAS  Google Scholar 

  • Rauen U, de Groot H (2002) Mammalian cell injury induced by hypothermia – the emerging role for reactive oxygen species. Biol Chem 383:477–488

    PubMed  CAS  Google Scholar 

  • Rauen U, de Groot H (2004) New insights into the cellular and molecular mechanisms of cold storage injury. J Investig Med 52:299–309

    PubMed  CAS  Google Scholar 

  • Rodriguez JV, Federico MB, Pizarro MD, Guibert EE, Scandizzi AL (2008) A device to measure oxygen consumption during the hypothermic perfusion of the liver. V Latin American Congress of Artificial Organs and Biomaterials, Ouro Preto, Brasil, N504

    Google Scholar 

  • Rosenthal J, Danovitch G, Wilkinson A, Ettenger RB (1991) The high cost of delayed graft function in cadaveric renal transplantation. Transplantation 51:1115–1118

    PubMed  CAS  Google Scholar 

  • Ruiz J, Lillihie RC (1974) Pancreas. In: Karow A, Abouna G, Humphries AL (eds) Organ preservation for transplantation. Little Brown & Co, Boston, pp 372–382

    Google Scholar 

  • Salahudeen AK, Huang H, Patel P, Jenkins JK (2000) Mechanism and prevention of cold storage-induced human renal tubular cell injury. Transplantation 70:1424–1431

    PubMed  CAS  Google Scholar 

  • Salehi P, Bigam DL, Ewaschuk JB, Madsen KL, Sigurdson GT, Jewell LD, Churchill TA (2008) Alleviating intestinal ischemia-reperfusion injury in an in vivo large animal model: developing an organ-specific preservation solution. Transplantation 85:878–884

    PubMed  CAS  Google Scholar 

  • Sandouka A, Fuller BJ, Mann BE, Green CJ, Foresti R, Motterlini R (2006) Treatment with CO-RMs during cold storage improves renal function at reperfusion. Kidney Int 69:239–247

    PubMed  CAS  Google Scholar 

  • Savolainen H, Tenhunen R, Elovaara E, Tossavainen A (1980) Cumulative biochemical effects of repeated subclinical hydrogen sulfide intoxication in mouse brain. Int Arch Occup Environ Health 46:87–92

    PubMed  CAS  Google Scholar 

  • Schloerb PR, Waldorf R, Welsh JS (1959) The protective effect of kidney hypothermia on total renal ischemia. Surg Gynecol Obstet 109:561–565

    PubMed  CAS  Google Scholar 

  • Silacci P, Desgeorges A, Mazzolai L, Chambaz C, Hayoz D (2001) Flow pulsatility is a critical determinant of oxidative stress in endothelial cells. Hypertension 38:1162–1166

    PubMed  CAS  Google Scholar 

  • Southard J, Belzer FO (1995) Organ preservation. Annu Rev Med 46:235–247

    PubMed  CAS  Google Scholar 

  • Southard JH, Van der Laan NC, Lutz M, Pavlock GS, Belzer JP, Belzer FO (1983) Comparison of the effect of temperature on kidney cortex mitochondria from rabbit, dog, pig, and human: Arrhenius plots of ADP-stimulated respiration. Cryobiology 20:395–400

    PubMed  CAS  Google Scholar 

  • Southard JH, Lutz M, Ametani M, Belzer FO (1984) Stimulation of ATP synthesis in hypothermically perfused dog kidneys by adenosine and PO4. Cryobiology 21:13–19

    PubMed  CAS  Google Scholar 

  • Starzl TE (2000) History of clinical transplantation. World J Surg 24:759–782

    PubMed  CAS  Google Scholar 

  • Starzl TE, Hakala TR, Shaw BW Jr, Hardesty RL, Rosenthal TJ, Griffith BP, Iwatsuki S, Bahnson HT (1984) A flexible procedure for multiple cadaveric organ procurement. Surg Gynecol Obstet 158:223–230

    PubMed  CAS  Google Scholar 

  • Stefanovich P, Ezzell RM, Sheehan SJ, Tompkins RG, Yarmush ML, Toner M (1996) Effects of hypothermia on the function, membrane integrity, and cytoskeletal structure of hepatocytes. Cryobiology 32:389–403

    Google Scholar 

  • Stickel DL, Chen KM, Robinson R (1968) The effects of organ perfusion and other factors on the immediate function of canaine renal autografts. In: Norman JC (ed) Organ perfusion for preservation. Appleton-Century-Crofts, NewYork, pp 61–69

    Google Scholar 

  • Storey K (2002) Life in the slow lane: molecular mechanisms of aestivation. Comp Biochem Physiol 133A:733–754

    CAS  Google Scholar 

  • Storey K (2004) Cold ischemic organ preservation: lessons from natural systems. JInvestMed 52:315–322

    CAS  Google Scholar 

  • Storey K, Storey J (1990) Facultative metabolic rate depression: molecular regulation and biochemical adaptation in anaerobiosis, hibernation and estivation. Q Rev Biol 65:145–174

    PubMed  CAS  Google Scholar 

  • Storey K, Storey J (2004a) Strategies for exploration of freeze responsive gene expression: advances in vertebrate freeze tolerance. Cryobiology 48:134–145

    PubMed  CAS  Google Scholar 

  • Storey K, Storey J (2004b) Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev Camb Philos Soc 79:207–233

    PubMed  Google Scholar 

  • Storey K, Storey J (2007) Tribute to P. L. Lutz: putting life on ‘pause’ – molecular regulation of hypometabolism. J Exp Biol 210:1700–1714

    PubMed  CAS  Google Scholar 

  • Storey KB, Heldmaier G, Rider MH (2010) Mammalian Hibernation: Physiology, Cell Signaling, and Gene Controls on Metabolic Rate Depression XX–XX

    Google Scholar 

  • T’ Hart NA, van der Plaats A, Faber A, Leuvenink HG, Olinga P, Wiersema-Buist J, Verkerke GJ, Rakhorst G, Ploeg RJ (2005) Oxygenation during hypothermic rat liver preservation: an in vitro slice study to demonstrate beneficial or toxic oxygenation effects. Liver Transpl 11:1403–1411

    Google Scholar 

  • Tamaki T, Kamada N, Wight D, Pegg D (1987) Successful 48-hour preservation of the rat liver by continuous hypothermic perfusion with haemaccel-isotonic citrate solution. Transplantation 43:468–471

    PubMed  CAS  Google Scholar 

  • Teoh NC, Farrell GC (2003) Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection. J Gastroenterol Hepatol 18:891–902

    PubMed  CAS  Google Scholar 

  • Tesi R, Elkhammas E, Davies E, Henry M (1994) Pulsatile kidney perfusion for evaluation of high-risk kidney donors safely expands the donor pool. Transplant Proc 26:241–242

    Google Scholar 

  • van der Plaatz A, ’T Hart NA, Verkerke GJ, Leuvenink HG, Ploeg RJ, Rakhorst G (2004) The Groningen hypothermic liver perfusion pump: functional evaluation of a new machine perfusion system. Ann Biomed Eng 32:623–631

    Google Scholar 

  • Vardanian A, Busuttil R, Kupiec-Weglinski J (2008) Molecular mediators of liver ischemia and reperfusion injury: a brief review. Mol Med 14:337–345

    PubMed  CAS  Google Scholar 

  • Wight J, Chilcott J, Holmes M, Brewer N (2003) The clinical cost effectiveness of pulsatile machine perfusion versus cold storage of kidneys for transplantation retreived from heart-beating and non-heart beating donors. Health Technol Assess 7:1–94

    PubMed  CAS  Google Scholar 

  • Williams GM (1986) Kidney preservation and early function in the cyclosporine era: an overview. Transplant Proc 18(Suppl 1):38–40

    PubMed  CAS  Google Scholar 

  • Willis JS, Ellory JC, Becker JH (1978) Na-K pump and Na-K-ATPase: disparity of their temperature sensitivity. Am J Physiol 235:C159–C167

    PubMed  CAS  Google Scholar 

  • Zimmermann F, Diettz H, Kohler CH, Kilian N, Kosterhon J, Scholz R (1982) Effects of hypothermia on anabolic and catabolic processes and on oxygen consumption in perfused rat livers. In: Pegg DE, Jacobsen IA, Halasz N (eds) Organ preservation: basic and applied aspects. MTP Press, Lancaster, pp 121–126

    Google Scholar 

Download references

Acknowledgements

Part of this collaborative work was facilitated by the UNESCO Chair in Cryobiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Fuller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuller, B., Guibert, E., Rodríguez, J. (2010). Lessons from Natural Cold-Induced Dormancy to Organ Preservation in Medicine and Biotechnology: From the “Backwoods to the Bedside”. In: Lubzens, E., Cerda, J., Clark, M. (eds) Dormancy and Resistance in Harsh Environments. Topics in Current Genetics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12422-8_14

Download citation

Publish with us

Policies and ethics