Skip to main content
Book cover

Mine Wastes pp 263–312Cite as

Radioactive Wastes of Uranium Ores

  • Chapter
  • First Online:
  • 3459 Accesses

Abstract

Uranium ores have the specific issue of radioactivity , and uranium mine wastes are invariably radioactive. This property differentiates uranium mine wastes from other mine waste types. For example, gold mine tailings contain cyanide, and the cyanide can be destroyed using natural, naturally enhanced or engineering techniques. Sulfidic wastes have the potential to oxidize, and oxidation of sulfidic wastes can be curtailed using covers. By contrast, the decay of radioactive isotopes and the associated release of radioactivity cannot be destroyed by chemical reactions, physical barriers or sophisticated engineering methods. Therefore, appropriate disposal and rehabilitation strategies of radioactive uranium mine wastes have to ensure that these wastes do not release radioactive substances into the environment and cause significant environmental harm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelouas A (2006) Uranium mill tailings: Geochemistry, mineralogy, and environmental impact. Elements 2:335–341

    Article  Google Scholar 

  • Abdelouas A, Lutze W, Nuttall E (1998a) Chemical reactions of uranium in ground water at a mill tailings site. J Contam Hydrol 34:343–361

    Article  Google Scholar 

  • Abdelouas A, Nuttall HE, Lutze W, Lu Y (1998b) In situ removal of uranium from ground water. In: Tailings and mine waste ’98. Balkema, Rotterdam, pp 669–677

    Google Scholar 

  • Abdelouas A, Lutze W, Nuttall HE (1999) Uranium contamination in the subsurface: characterization and remediation. In: Burns PC, Finch R (eds) Uranium: mineralogy, geochemistry and the environment, vol 38. Mineralogical Society of America, Washington, DC, pp 433–473 (Reviews in mineralogy and geochemistry)

    Google Scholar 

  • Abhilash, Singh S, Mehta KD, Kumar V, Pandey BD, Pandey VM (2009) Dissolution of uranium from silicate-apatite ore by Acidithiobacillus ferrooxidans. Hydrometallurgy 95:70–75

    Article  Google Scholar 

  • Antunes SC, Castro BB, Pereira R, Gonçalves F (2008) Contribution for tier 1 of the ecological risk assessment of Cunha Baixa uranium mine (Central Portugal): II Soil ecotoxicological screening. Sci Total Environ 390:387–395

    Article  Google Scholar 

  • Applegate RJ, Kraatz M (1991)Rehabilitation of Rum Jungle uranium mine. In: Proceedings of the 2nd international conference on the abatement of acidic drainage. MEND, pp 155–169

    Google Scholar 

  • Attendorn HG, Bowen RNC (1997) Radioactive and stable isotope geology. Chapman & Hall, London

    Book  Google Scholar 

  • Baborowski M, Bozau E (2006) Impact of former mining activities on the uranium distribution in the River Saale (Germany). Appl Geochem 21:1073–1082

    Article  Google Scholar 

  • Benes P, Sebesta F, Sedlacek J, Obdrzalek M, Sandrik R (1983) Particulate forms of radium and barium in uranium mine waste waters and receiving river waters. Water Res 17:619–624

    Article  Google Scholar 

  • Bots P, Behrends T (2008) Uranium mobility in subsurface aqueous systems: the influence of redox conditions. Mineral Mag 72:381–384

    Article  Google Scholar 

  • Brown PL, Guerin M, Hankin SI, Lowson RT (1998) Uranium and other contaminant migration in groundwater at a tropical Australian uranium mine. J Contam Hydrol 35:295–303

    Article  Google Scholar 

  • Brownlow AH (1996) Geochemistry. 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Burghardt D, Kassahun A (2005) Development of a reactive zone technology for simultaneous in situ immobilisation of radium and uranium. Environ Geol 49:314–320

    Article  Google Scholar 

  • Burgos WD, McDonough JT, Senko JM, Zhang G, Dohnalkova AC, Kelly SD, Gorby Y, Kemner KM (2008) Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1. Geochim Cosmochim Acta 72:4901–4915

    Article  Google Scholar 

  • Burns PC (1999) The crystal chemistry of uranium. In: Burns PC, Finch R (eds) Uranium: mineralogy, geochemistry and the environment, vol 38. Mineralogical Society of America, Washington, DC, pp 23–90 (Reviews in mineralogy and geochemistry)

    Google Scholar 

  • Caldwell E, Johnson J(1997) Use of risk-based standards for restoration of ground water at in situ uranium mines. In: Tailings and mine waste ’97. Balkema, Rotterdam, pp 21–25

    Google Scholar 

  • Carvalho FP, Oliveira JM, Neves MO, Abreu MM, Vicente EM (2009b) Soil to plant (Solanum tuberosum L.) radionuclide transfer in the vicinity of an old uranium mine. Geochem Explor Environ Anal 9:275–278

    Article  Google Scholar 

  • Chen N, Jiang DT, Cutler J, Kotzer T, Jia YF, Demopoulos GP, Rowson JW (2009) Structural characterization of poorly-crystalline scorodite, iron(II)-arsenate co-precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine structure spectroscopy. Geochim Cosmochim Acta 73:3260–3276

    Article  Google Scholar 

  • Curtis GP, Kohler M, Davis JA (2009) Comparing approaches for simulating the reactive transport of U(VI) in ground water. Mine Water Environ 28:84–93

    Article  Google Scholar 

  • Davy DR, Levins DM (1984) Air and water borne pollutants from uranium mines and mills. Min Mag March 1984:283–291

    Google Scholar 

  • Donahue R, Hendry MJ, Landine P (2000) Distribution of arsenic and nickel in uranium mill tailings, Rabbit Lake, Saskatchewan, Canada. Appl Geochem 15:1097–1119

    Article  Google Scholar 

  • Donahue R, Hendry MJ (2003) Geochemistry of arsenic in uranium mine mill tailings, Saskatchewan, Canada. Appl Geochem 18:1733–1750

    Article  Google Scholar 

  • Duquène L, Tack F, Meers E, Baeten J, Wannijn J, Vandenhove H (2008) Effects of biodegradable amendments on uranium solubility in contaminated soils. Sci Total Environ 391:26–33

    Article  Google Scholar 

  • East TJ, Uren CJ, Noller BN, Cull RF, Curley PM, Unger CJ (1994) Erosional stability of rehabilitated uranium mine structures incorporating natural landform characteristics, northern tropical Australia. Zeitschrift für Geomorphologie 38:283–298

    Google Scholar 

  • Edwards L, Küsel K, Drake H, Kostka JE (2007) Electron flow in acidic subsurface sediments co-contaminated with nitrate and uranium. Geochim Cosmochim Acta 71:643–654

    Article  Google Scholar 

  • Eisenbud M, Gesell T (1997) Environmental radioactivity from natural, industrial and military sources. Academic Press, San Diego

    Google Scholar 

  • Elless MP, Lee SY (1998) Uranium solubility of carbonate-rich uranium-contaminated soils. Water Air Soil Poll 107:147–162

    Article  Google Scholar 

  • Erskine DW, Yancey CL, Lawrence EP (1997) Natural attenuation of hazardous constituents in groundwater at uranium mill tailings sites. In: Tailings and mine waste ’97. Balkema, Rotterdam, pp 489–498

    Google Scholar 

  • Ewing RC (1999) Radioactivity and the 20th century. In: Burns PC, Finch R (eds) Uranium; mineralogy, geochemistry and the environment, vol 38. Mineralogical Society of America, Washington, DC, pp 1–21 (Reviews in mineralogy and geochemistry)

    Google Scholar 

  • Fernandes HM, Franklin MR, Veiga LH (1998) Acid rock drainage and radiological environmental impacts. A study case of the uranium mining and milling facilities at Pocos de Caldas. Waste Manage 18:169–181

    Article  Google Scholar 

  • Finch R, Murakami T (1999) Systematics and paragenesis of uranium minerals. In: Burns PC, Finch R (eds) Uranium: mineralogy, geochemistry and the environment, vol 38. Mineralogical Society of America, Washington, DC, pp 91–179 (Reviews in mineralogy and geochemistry)

    Google Scholar 

  • Flanagan JC, Morton WH, Ward TA (1983) Groundwater management around uranium mine waste areas, Mary Kathleen, Australia. In: International conference on groundwater and man. Australian Water Resources Council Conference Series no 8, pp 81–88

    Google Scholar 

  • Gaines M (2000) Radiation and risk. New Scientist 2230 (Inside Science, 4 pp)

    Google Scholar 

  • Goulden WD, Hendry MJ, Clifton AW, Barbour SL (1998) Characterization of radium-226 in uranium mill tailings. In: Tailings and mine waste ’98. Balkema, Rotterdam, pp 561–570

    Google Scholar 

  • Groudev S, Georgiev P, Spasova I, Nicolova M (2008) Bioremediation of acid mine drainage in a uranium deposit. Hydrometallurgy 94:93–99

    Article  Google Scholar 

  • Gustafsson JP, Dässman E, Bäckström M (2009) Towards a consistent geochemical model for prediction of uranium(VI) removal from groundwater by ferrihydrite. Appl Geochem 24:454–462

    Article  Google Scholar 

  • Haas JR, Bailey EH, Purvis OW (1998) Bioaccumulation of metals by lichens; uptake of aqueous uranium by Peltigera membranacea as a function of time and pH. Am Mineral 83:1494–1502

    Google Scholar 

  • Hancock GR, Grabham MK, Martin P, Evans KG, Bollhöfer A (2006) A methodology for the assessment of rehabilitation success of post mining landscapes – sediment and radionuclide transport at the former Nabarlek uranium mine, Northern Territory, Australia. Sci Total Environ 354:103–119

    Article  Google Scholar 

  • Hill FC (1999) Identification of selected uranium-bearing minerals and inorganic phases by X-ray powder diffraction. In: Burns PC, Finch R (eds) Uranium; mineralogy, geochemistry and the environment, vol 38. Mineralogical Society of America, Washington, DC, pp 653–679 (Reviews in mineralogy and geochemistry)

    Google Scholar 

  • Kathren RL (1998) NORM sources and their origins. Appl Rad Isotop 49:149–168

    Article  Google Scholar 

  • Kipp GG, Stone JJ, Stetler LD (2009) Arsenic and uranium transport in sediments near abandoned uranium mines in Harding County, South Dakota. Appl Geochem 24:2246–2255

    Article  Google Scholar 

  • Landa ER (1999) Geochemical and biogeochemical controls on element mobility in and around uranium mill tailings. In: Filipek LH, Plumlee GS (eds) The environmental geochemistry of mineral deposits. Part B: case studies and research topics, vol 6B. Society of Economic Geologists, Littleton, pp 527–538 (Reviews in economic geology)

    Google Scholar 

  • Landa ER, Gray JR (1995) US Geological Survey research on the environmental fate of uranium mining and milling wastes. Environ Geol 26:19–31

    Article  Google Scholar 

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Langmuir D, Mahoney J, MacDonald A, Rowson J (1999) Predicting the arsenic source-term from buried uranium mill tailings. In: Tailings and mine waste ’99. Balkema, Rotterdam, pp 503–514

    Google Scholar 

  • Langmuir D, Mahoney J, Rowson J (2006) Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4 2H2O) and their application to arsenic behavior in buried tailings. Geochim Cosmochim Acta 70:2942–2956

    Article  Google Scholar 

  • Lawrence EP, Erskine DW, Sealy CO (1997) Evaluation of groundwater remediation at a uranium mill site in Uravan, Colorado. In: Tailings and mine waste ’97. Balkema, Rotterdam, pp 565–575

    Google Scholar 

  • Lloyd JR, Klessa DA, Parry DL, Buck P, Brown NL (2004) Stimulation of microbial sulphate reduction in a constructed wetland: microbiological and geochemical analysis. Water Res 38:1822–1830

    Article  Google Scholar 

  • Lottermoser BG (1995) Rare earth element mineralogy of the Olympic Dam Cu-U-Au-Ag deposit, South Australia; implications for ore genesis. Neues Jb Miner, Monatshefte 8:371–384

    Google Scholar 

  • Lottermoser BG, Ashley PM (2005) Tailings dam seepage at the rehabilitated Mary Kathleen uranium mine, Australia. J Geochem Explor 85:119–137

    Article  Google Scholar 

  • Lottermoser BG, Ashley PM (2006b) Physical dispersion of radioactive mine waste at the rehabilitated radium Hill uranium mine site, South Australia. Austral J Earth Sci 53:485–499

    Article  Google Scholar 

  • Lottermoser BG, Ashley PM, Costelloe MT (2005) Contaminant dispersion at the rehabilitated Mary Kathleen uranium mine, Australia. Environ Geol 48:748–761

    Article  Google Scholar 

  • Luo J, Weber FA, Cirpka OA, Wu WM, Nyman JL, Carley J, Jardine PM, Criddle CS, Kitanidis PK (2007) Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria. J Contam Hydrol 92:129–148

    Article  Google Scholar 

  • Mager D, Vels B (1992) Wismut; an example for the uranium industry in eastern Europe? The Uranium Institute Annual Symposium 1992. The Uranium Institute, London, pp 1–7

    Google Scholar 

  • Mahoney J, Slaughter M, Langmuir D, Rowson J (2007) Control of As and Ni releases from a uranium mill tailings neutralization circuit: solution chemistry, mineralogy and geochemical modeling of laboratory study results. Appl Geochem 22:2758–2776

    Article  Google Scholar 

  • Major R (2001) Natural radioactivity, hazards, wastes and the environment in Australia. In: Gostin VA (ed) Gondwana to greenhouse: Australian environmental geoscience. Special Publication no 21. Geological Society of Australia, Sydney, pp 111–124

    Google Scholar 

  • Marques S, Gonçalves F, Pereira R (2008) Effects of a uranium mine effluent in the early-life stages of Rana perezi Seoane. Sci Total Environ 402:29–35

    Article  Google Scholar 

  • Martin AJ, Crusius J, McNee JJ, Yanful EK (2003) The mobility of radium-226 and trace metals in pre-oxidized subaqueous uranium mill tailings. Appl Geochem 18:1095–1110

    Article  Google Scholar 

  • Menzies NW, Mulligan DR (2000) Vegetation dieback on clay-capped pyritic mine wastes. J Environ Qual 29:437–442

    Article  Google Scholar 

  • Merroun ML, Selenska-Pobell S (2008) Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 102:285–295

    Article  Google Scholar 

  • Moldovan BJ, Hendry MJ, Harrington GA (2008) The arsenic source term for an in-pit uranium mine tailings facility and its long-term impact on the regional groundwater. Appl Geochem 23:1437–1450

    Article  Google Scholar 

  • Mudd GM (2001a) Critical review of acid in situ leach uranium mining: 1. USA and Australia. Environ Geol 41:390–403

    Article  Google Scholar 

  • Mudd GM (2001b) Critical review of acid in situ leach uranium mining: 2. Soviet Block and Asia. Environ Geol 41:404–416

    Article  Google Scholar 

  • Muscatello JR, Janz DM (2009) Selenium accumulation in aquatic biota downstream of a uranium mining and milling operation. Sci Total Environ 407:1318–1325

    Article  Google Scholar 

  • Naamoun T, Degering D, Hebert D, Merkel B (2000) Distribution of radionuclides in the tailings of Schneckenstein, Germany. In: Tailings and mine waste ’00. Balkema, Rotterdam, pp 353–359

    Google Scholar 

  • Nielson DL, Linpei C, Ward SH (1991) Gamma-ray spectrometry and radon emanometry in environmental geophysics. In: Ward SH (ed) Geotechnical and environmental geophysics, vol 1: review and tutorial. Society of Exploration Geophysicists, Tulsa, pp 219–250

    Google Scholar 

  • Noller BN, Hart BT (1993) Uranium in sediments from the Magela Creek catchment, Northern Territory, Australia. Environ Technol 14:649–656

    Article  Google Scholar 

  • Noller BN, Watters RA, Woods PH (1997) The role of biogeochemical processes in minimising uranium dispersion from a mine site. J Geochem Explor 58:37–50

    Article  Google Scholar 

  • Peacey V, Yanful EK, Payne R (2002) Field study of geochemistry and solute fluxes in flooded uranium mine tailings. Can Geotech J 39:357–376

    Article  Google Scholar 

  • Peng B, Tang X, Yu C, Xie S, Xiao M, Song Z, Tu X (2009) Heavy metal geochemistry of the acid mine drainage discharged from the Hejiacun uranium mine in central Hunan, China. Environ Geol 57:421–434

    Article  Google Scholar 

  • Pereira R, Antunes SC, Marques SM, Gonçalves F (2008) Contribution for tier 1 of the ecological risk assessment of Cunha Baixa uranium mine (Central Portugal): I Soil chemical characterization. Sci Total Environ 390:377–386

    Article  Google Scholar 

  • Pichler T, Hendry MJ, Hall GEM (2001) The mineralogy of arsenic in uranium mine tailings at the Rabbit Lake in-pit facility, northern Saskatchewan, Canada. Environ Geol 40:495–506

    Article  Google Scholar 

  • Pinto MMSC, Silva MMVG, Neiva AMR (2004) Pollution of water and stream sediments associated with the Vale de Abrutiga uranium mine, central Portugal. Mine Water Environ 23:66–75

    Article  Google Scholar 

  • Rager R, MacClanahan M, ThiersG, Grozescu S (1996) Disposal cell cover selection – riprap vs. grass. In: Tailings and mine waste ’96. Balkema, Rotterdam, pp 219–228

    Google Scholar 

  • Ripley EA, Redmann RE, Crowder AA (1996) Environmental effects of mining. St Lucie Press, Delray Beach

    Google Scholar 

  • Ritchie AIM, Bennett JW (2003) The Rum Jungle mine – a case study. In: Jambor JL, Blowes DW, Ritchie AIM (eds), Environmental aspects of mine wastes. Mineralogical Association of Canada, Ottawa, pp 385–405

    Google Scholar 

  • Schippers A, Hallmann R, Wentzien S, Sand W (1995) Microbial diversity in uranium-mine waste heaps. Appl Environ Microbiol 61:2930–2935

    Google Scholar 

  • Schöner A, Noubactep C, Büchel G, Sauter M (2009) Geochemistry of natural wetlands in former uranium milling sites (eastern Germany) and implications for uranium retention. Chemie der Erde 69:91–107

    Article  Google Scholar 

  • Sharma PV (1997) Environmental and engineering geophysics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Shaw SA, Hendry MJ (2009) Geochemical and mineralogical impacts of H2SO4 on clays between pH 5.0 and -3.0. Appl Geochem 24:333–345

    Article  Google Scholar 

  • Simon FG, Biermann V, Peplinski B (2008) Uranium removal from groundwater using hydroxyapatite. Appl Geochem 23:2137–2145

    Article  Google Scholar 

  • Simsek C (2008) Assessment of natural radioactivity in aquifer medium bearing uranium ores in Koprubasi, Turkey. Environ Geol 55:1637–1646

    Article  Google Scholar 

  • Somot S, Pagel M, Thiry J, Ruhlmann F (2000) Speciation of 226Ra, uranium and metals in uranium mill tailings. In: Tailings and mine waste ’00. Balkema, Rotterdam, pp 343–352

    Google Scholar 

  • Stojanovic M, Stevanovic D, Iles D, Grubišic M, Milojkovic (2009) The effect of the uranium content in the tailings on some cultivated plants. Water Air Soil Pollut 200:101–108

    Article  Google Scholar 

  • Suzuki Y, Banfield JF (1999) Geomicrobiology of uranium. In: Burns PC, Finch R (eds) Uranium; mineralogy, geochemistry and the environment, vol 38. Mineralogical Society of America, Washington, DC, pp 393–432 (Reviews in mineralogy and geochemistry)

    Google Scholar 

  • Ulrich KU, Rossberg A, Foerstendorf H, Zänker H, Scheinost AC (2006) Molecular characterization of uranium(VI) sorption complexes on iron(III)-rich acid mine water colloids. Geochim Cosmochim Acta 70:5469–5487

    Article  Google Scholar 

  • Wanty RB, Miller WR, Briggs PH, McHugh JB (1999) Geochemical processes controlling uranium mobility in mine drainages. In: Plumlee GS, Logsdon MS (eds) The environmental geochemistry of mineral deposits. Part A: processes, techniques and health issues, vol 6A. Society of Economic Geologists, Littleton, pp 201–213 (Reviews in economic geology)

    Google Scholar 

  • Ward TA, Cox BJ (1985) Rehabilitation of the Mary Kathleen uranium mining and processing site. In: Proceedings of the 9th international symposium uranium and nuclear energy. Uranium Institute, London, pp 222–236

    Google Scholar 

  • Ward TA, Flannagan JC, Hubery RW (1983) Rehabilitation of the Mary Kathleen uranium mine site after closure. In: Proceedings of the international specialist conference on water regime in relation to milling, mining and waste treatment including rehabilitation. Australian Water and Wastewater Association, Canberra, pp 32.1–32.9

    Google Scholar 

  • Willett IR, Bond WJ (1995) Sorption of manganese, uranium, and radium by highly weathered soils. J Environ Qual 24:834–845

    Article  Google Scholar 

  • Willett IR, Bond WJ (1998) Fate of manganese and radionuclides applied in uranium mine waste water to a highly weathered soil. Geoderma 84:195–211

    Article  Google Scholar 

  • Willett IR, Noller BN, Beech TA (1994) Mobility of radium and heavy metals from uranium mine tailings in acid sulfate soils. Austral J Soil Res 32:335–355

    Article  Google Scholar 

  • Wilson WF (1994) A guide to naturally occurring radioactive material (NORM). PennWell Publishing, Tulsa

    Google Scholar 

  • Wolf SF (1999) Analytical methods for determination of uranium in geological and environmental materials. In: Burns PC, Finch R (eds) Uranium: mineralogy, geochemistry and the environment, vol 38. Mineralogical Society of America, Washington, DC, pp 623–651 (Reviews in mineralogy and geochemistry)

    Google Scholar 

  • Woodward A, Mylvaganam A (1993) Effects of uranium mining on the health of workers; findings from Radium Hill. In: Programme and abstracts of the international congress on applied mineralogy. Mineralogy in the Service of Mankind. Fremantle, pp 14–16

    Google Scholar 

  • Yabusaki SB, Fang Y, Long PE, Resch CT, Peacock AD, Komlos J, Jaffe PR, Morrison SJ, Dayvault RD, White DC, Anderson RT (2007) Uranium removal from groundwater via in situ biostimulation: field-scale modeling of transport and biological processes. J Contam Hydrol 93:216–235

    Article  Google Scholar 

  • Yusof AM, Mahat MN, Omar N, Wood AKH (2001) Water quality studies in an aquatic environment of disused tin-mining pools and in drinking water. Ecol Eng 16:405–414

    Article  Google Scholar 

  • Zielinski RA, Chafin DT, Banta ER, Szabo BJ (1997) Use of 234U and 238U isotopes to evaluate contamination of near-surface groundwater with uranium-mill effluent; a case study in south-central Colorado, USA. Environ Geol 32:124–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd G. Lottermoser PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lottermoser, B.G. (2010). Radioactive Wastes of Uranium Ores. In: Mine Wastes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12419-8_6

Download citation

Publish with us

Policies and ethics