Skip to main content

Giant deposits in geological context

  • Chapter
  • First Online:
  • 3215 Accesses

Abstract

Concentration and accumulation of metals that successfully terminate with formation of an economic mineral deposit range from an instantaneous, single-stage process to a prolonged, multistage history of gradual metal addition, reconstitution and modification. The opposite, metal dispersion (Holland and Petersen, 1981), is also at work and this can take place anywhere during the ore formation history and disperse (dissipate) a promising metal enrichment or an orebody already made. The most obvious and destructive case of ore dispersal is erosion of earlier deposits. Mining, equivalent to anthropogenic erosion and denudation, is a particularly rapid and efficient process of orebody removal and dispersion, although much lower quality “remnant deposits” like dumps of low grade material, tailings or slag heaps are sometimes generated by this process, and are left for future generations (Chapter 13).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  • Henley RW, Adams J (1979) On the evolution of giant gold placers. Trans Inst Min Metall, London, v B89, pp 41–49

    Google Scholar 

  • Urabe T (1987) Kuroko deposit modeling based on magmatic hydrothermal theory. Mining Geol, v 37, pp 159–176

    Google Scholar 

  • Rytuba JJ (1996) Cenozoic metallogeny of California, in: AR Coyner, PL Fahey, eds, Geology and Ore Deposits of the American Cordillera. Geol Soc Nevada, Sympos Proc, Reno, pp 803–822

    Google Scholar 

  • Keith, SB (1986) Petrochemical variations in Laramide magmatism and their relationships to Laramide tectonic and metallogenic evolution in Arizona and adjacent regions. Arizona Geol Soc Digest, v 16, pp 89–101

    Google Scholar 

  • Campbell IH, Ballard JR, Palin JM, Allen C, Faunes A (2006) U-Pb zircon geochronology of granitic rocks from the Chuquicamata-El Abra porphyry copper belt of northern Chile: Excimer laser ablation ICP-MS analysis. Econ Geol, v 101, pp 1327–1344

    Article  Google Scholar 

  • Hitzman M, Kirkham R, Broughton D, Thorson J, Selley D (2005) The sediment-hosted stratiform copper deposits. Econ Geol 100th Anniv Vol, pp 609–642

    Google Scholar 

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proetrozoic iron oxide (Cu-U-Au-REE) deposits. Precambr Res, v 58, pp 241–287

    Article  Google Scholar 

  • Sillitoe RH (1993) Giant and bonanza gold deposits in the epithermal environment: Assessment of potential genetic factors. Soc Econ Geol, Spec Publ 2, pp 125–156

    Google Scholar 

  • Laznicka P (1999) Quantitative relationships among giant deposits of metals. Econ Geol, v 94, pp 455–472

    Article  Google Scholar 

  • Phillips GN, Groves DI, Kerrich R (1996) Factors in the formation of the giant Kalgoorlie gold deposit. Ore Geol Revs, v 10, pp 295–317

    Article  Google Scholar 

  • Miller DM, Nilsen TH, Bilodeau WL (1992) Late Cretaceous to early Eocene geologic evolution of the US Cordillera. The Geology of North America, v G-3, Geol Soc Amer, Boulder, pp 205–260

    Google Scholar 

  • Penczak RS, Mason R (1999) Characteristics and origin of Archean premetamorphic hydrothermal alteration at the Campbell Gold Mine, northwestern Ontario, Canada. Econ Geol, v 94, pp 507–528

    Article  Google Scholar 

  • Kerrich R, Goldfarb RJ, Groves DI, Garwin S (2000) The geodynamics of world class gold deposits: Characteristics, space-time distribution, and origins. Rev Econ Geol, v 13, pp 501–551

    Google Scholar 

  • Routhier P (1980) Où Sont les Métaux Pour L’avenir? Mém du BRGM, No 105, 410 p

    Google Scholar 

  • Kelley DL, et al (2006) Beyond the obvious limits of ore deposits: the use of mineralogical, geochemical and biological features for the remote detection of mineralization. Econ Geol, v 101, pp 729–752

    Article  Google Scholar 

  • Laznicka P (1993) Precambrian Empirical Metallogeny. Elsevier, Amsterdam, 1622 p

    Google Scholar 

  • Sinclair B (1989) Lake Rotokaua sulphur deposit. Australas Inst Min Metall Monogr 13, pp 89–91

    Google Scholar 

  • Meyer C (1981) Ore-forming processes in geologic history. Econ Geol 75th Anniv Vol, pp 6–41

    Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature, v 370, pp 519–527

    Article  Google Scholar 

  • Livingston DL, Mauger RL, Damon PE (1968) Geochronology of the emplacement, enrichment and preservation of Arizona porphyry copper deposits. Econ Geol, v 63, pp 30–36

    Article  Google Scholar 

  • Robb LJ, Meyer FM, Ferraz MF, Drennan GR (1990) The distribution of radioelements in Archean granites of the Kaapvaal Craton, with implications for the source of uranium in the Witwatersrand Basin. South Afr J Geol, v 93, no 1, pp 5–40

    Google Scholar 

  • Abdullaev KhM (1964) Rudno-Petrograficheskie Provintsii. Nedra, Moscow, 135 p.

    Google Scholar 

  • Woodall R (1994) Empiricism and concept in succesful mineral exploration. Austral Journ Earth Sci, v 41, pp 1–20

    Article  Google Scholar 

  • Wallace SR (1995) Presidential address: The Climax-type molybdenite deposits: What they are, where they are, and why they are. Econ Geol, v 90, pp 1359–1380

    Google Scholar 

  • Laznicka P (1998) The setting and affiliation of giant ore deposits. Proc of the 9th Quadren IAGOD Sympos, Schweizerbart, Stuttgart, pp 1–14

    Google Scholar 

  • Kesler SE, Wilkinson BH (2009) Resources of gold in Phanerozoic epithermal deposits. Econ Geol, v 104, pp 623–633

    Article  Google Scholar 

  • Wilkinson BH, Kesler SE (2009) Quantitative identification of metalliferous epochs and provinces: application to Phanerozoic porphyry copper deposits. Econ Geol, v 104, pp 607–622

    Article  Google Scholar 

  • Love JD, Antweiler JC, Williams FE (1975) Mineral resources of the Teton Corridor, Teton County, Wyoming. U.S. Geol Surv Bulletin 1397-A

    Google Scholar 

  • Naldrett AJ (1999a) World-class Ni-Cu-PGE deposits: Key factors in their genesis. Mineralium Deposita, v 34, pp 227–240

    Article  Google Scholar 

  • Lindgren W (1933) Mineral Deposits, 4th ed. McGraw Hill, New York, 930 p

    Google Scholar 

  • Ossandón GC, Fréraut RC, Gustafson LB, Lindsay DD, Zentilli M (2001) Geology of the Chuquicamata Mine: A progress report. Econ Geol, v 96, pp 249–270

    Article  Google Scholar 

  • Minter WEL (1999) Irrefutable detrital origin of Witwatersrand gold and evidence of eolian signatures. Econ Geol, v 94, pp 665–670

    Article  Google Scholar 

  • Laznicka P (1973b) Development of non-ferrous metal deposits in geologic time. Canad Journ Earth Sci, v 19, pp 18–25

    Google Scholar 

  • Fyfe WS, Price NJ, Thompson AB (1978) Fluids in the Crust. Elsevier, Amsterdam, 383 p

    Google Scholar 

  • Sillitoe RH (2005) Supergene oxidized and enriched porphyry copper and related deposits. Econ Geol 100th Anniv Vol, pp 723–768

    Google Scholar 

  • Hallbauer DK (1986) The mineralogy and geochemistry of Witwatersrand pyrite, gold, uranium and carbonaceous matter, in: Anhaeusser CR, Maske S, eds, Mineral Deposits of Southern Africa. Geol Soc South Africa, Johannesburg, pp 731–752

    Google Scholar 

  • Goldfarb RJ, Snee LW, Pickthorn WJ (1993) Orogenesis, high-T thermal events, and gold vein formation within metamorphic rocks of the Alaskan Cordillera. Min Mag, v 57, pp 375–394

    Article  Google Scholar 

  • Titley SR (1993a) Characteristics of porphyry copper occurrences in the American Southwest, in: RV Kirkham et al, eds, Geol Assoc Canada Spec Paper 40, pp 433– 464

    Google Scholar 

  • Haeussler PJ, Bradley D, Goldfarb RJ, Snee LW, Taylor CD (1995) Link between ridge subduction and gold mineralization in southern Alaska. Geology, v 23, pp 995–998

    Article  Google Scholar 

  • Burk R, Hodgson CJ, Quartermain RA (1986) The geological setting of the Teck-Corona Au-Mo-Ba deposit, Hemlo, Canada, in: AJ Macdonald, ed, Gold ‘86, pp 311–326

    Google Scholar 

  • Fouques JP, Fowler M, Knipping HD, Schimann K (1986) The Cigar Lake uranium deposit: discovery and general characteristics, in: EL Evans, ed, Uranium Deposits of Canada. CIM Spec Vol 33, pp 218–229

    Google Scholar 

  • Hutchinson RW (1981) Metallogenic evolution and Precambrian tectonics, in: A Kröner, ed, Precambrian Plate Tectonics. Elsevier, Amsterdam, pp 733–760

    Google Scholar 

  • Le Bas MJ (1987) Nephelinites and carbonatites, in: JG Fitton, BGJ Upton, eds, Alkaline Igneous Rocks. Geol Soc London Spec Publ 30, pp 53–83

    Google Scholar 

  • Burke K, Steiberger B, Torsvik TH, Smethurst MA (2007) Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth Planet Sci Lett, v 265, pp 49–60

    Article  Google Scholar 

  • Hutchison CS (1983) Economic Deposits and their Tectonic Setting. Macmillan, London, 365 p

    Google Scholar 

  • Woolley AR (1989) The spatial and temporal distribution of carbonatites, in: K Bell, ed, Carbonatites-Genesis and Evolution. Unwin Hyman, London, pp 149–176

    Google Scholar 

  • Sattran V, Klomínský J, Vejnar Z, Fišera M (1970) Petrometallogenic series as a source of metals of endogene ore deposits, in: Z Pouba, M Štemprok, eds, Problems of Hydrothermal Ore Deposition. Schweizerbart, Stuttgart, pp 78–81

    Google Scholar 

  • Saupé F (1990) Geology of the Almadén mercury deposit, Province of Ciudad Real, Spain. Econ Geol, v 85, pp 482–510

    Article  Google Scholar 

  • Shaw AL, Guilbert JM (1990) Geochemistry and metallogeny of Arizona peraluminous granitoids with reference to Appalachian and European occurrences. Geol Soc Amer Spec Paper 246, pp 317–356

    Google Scholar 

  • Phillips CH (1985) Intermountain gold anomalysignificance and potential. Eng Mining J, May 1985, pp 34–38

    Google Scholar 

  • Xie Xuejing, Yin Binchuan (1993) Geochemical patterns from local to global. Journ Geoch Explor, v 47, pp 109–129

    Article  Google Scholar 

  • Epstein EM, Danil’chenko NA, Postnikov SA (1994) Geology of the unique Tomtor deposit of rare metals (north of the Siberian Platform). Geol Ore Deposits, v 36, pp 75–100

    Google Scholar 

  • Sawkins FJ (1990) Metal Deposits in Relation to Plate Tectonics, 2nd edition. Springer, Berlin, 461 p

    Google Scholar 

  • Holland HD (1984) The Chemical Evolution of the Atmosphere and Ocean. Princeton Univ Press, Princeton, NJ, 582 p

    Google Scholar 

  • Holland HD, Petersen U (1981) Element dispersion, element concentration, and ore deposits. Mineral Resources Development Series, Nat Acad Press, Washington DC, pp 39–46

    Google Scholar 

  • McCarthy TS (1994) A review of the regional structural controls on the occurrence and character of the Ventersdorp Contact Reef. Econ Geol Res Unit, Witwatersrand Uni, Info circular 276, 21 p

    Google Scholar 

  • Laznicka P (1989) Breccias and ores, part 1: History, organization and petrography of breccias. Ore Geol Revs, v 4, pp 315–344

    Article  Google Scholar 

  • Clark AH (1993) Are outsize porphyry copper deposits either anatomically or environmentally distinctive? Soc Econ Geol Spec Publ 2, pp 213–183

    Google Scholar 

  • Cooke DR, Hollings P, Walshe JL (2005) Giant porphyry deposits: characteristics, distribution and tectonic controls. Econ Geol, v 100, pp 801–818

    Article  Google Scholar 

  • Brimhall GH, Crerar DA (1989) Ore fluids, magmatic to supergene. Miner Soc Amer, Revs in Mineralogy, v 17, pp 235–282

    Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids, in: HL Barnes, ed, Geochemistry of Hydrothermal Ore Deposits. Holt, Rinehart, Winston, New York, pp 71–136

    Google Scholar 

  • Bilibin YuA (1951) Metallogenic provinces and Metallogenic Epochs, English Translation. Geol Bull, Dept Geology, Queens College, NY, 35 p

    Google Scholar 

  • Burrough, PA, McDonnell, RA (1998) Spatial Information Systems and Geostatistics. Clarendon Press, Oxford

    Google Scholar 

  • Barton MD (1996) Granitic magmatism and metallogeny of southwestern North America. Trans Royal Soc Edinburgh, Earth Sciences, v 87, pp 261–280

    Google Scholar 

  • Mitchell AHG, Garson MS (1981) Mineral Deposits and Global Tectonic Setting. Academic Press, London, 405 p

    Google Scholar 

  • Stavast VJA, et al (2006) The fate of magmatic sulfides during intrusion or eruption, Bingham and Tintic districts, Utah. Econ Geol, v 101, pp 329–345

    Article  Google Scholar 

  • Candela PA (1989) Magmatic ore-forming fluids: Thermodynamic and mass transfer calculations of metal concentrations. Rev Econ Geol, v 4, pp 203–221

    Google Scholar 

  • Bornhorst TJ, Paces JB, Grant NK, Obradovich JD, Huber NK (1988) Age of native copper mineralization, Keweenaw Peninsula, Michigan. Econ Geol, v 83, pp 619–625

    Article  Google Scholar 

  • Blevin PL, Chappell BV (1992) The role of magma series, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Trans Royal Soc Edinburgh, Earth Sci, v 83, pp 305–317

    Google Scholar 

  • Dawson KM, Panteleyev A, Woodsworth GJ, Sutherland Brown A (1992) Regional metallogeny of the Canadian Cordillera, in: H Gabrielse, CJ Yorath, eds, The Cordilleran Orogen. Geol of Canada, v 4, Geol Survey of Canada, pp 707–768

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Laznicka .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laznicka, P. (2010). Giant deposits in geological context. In: Giant Metallic Deposits. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12405-1_15

Download citation

Publish with us

Policies and ethics