Skip to main content

Long-range Interactions and Diluted Networks

  • Chapter

Part of the book series: Nonlinear Physical Science ((NPS))

Abstract

Long-range interactions appear in gravitational and Coulomb systems, two-dimensional hydrodynamics, plasmas, etc. These physical systems are studied by a variety of theoretical and numerical methods, but their description in terms of statistical mechanics and kinetic theory remains an open challenge. Recently, there has been a burst of activity in this field, since it has been realized that some simplified models can be solved exactly in different ensembles (microcanonical, canonical, grand-canonical, etc.). Besides that, numerical simulations and specific kinetic theory approaches have revealed the presence of out-of-equilibrium macrostates, called Quasi Stationary States (QSSs), whose lifetime increases with a power of the number of particles. This discovery opens the interesting and intriguing possibility that the states observed in experiments where long-range interactions are involved are not Boltzmann-Gibbs equilibrium states. In this chapter, after a brief review of recent results on systems with long-range interactions, we focus on the Hamiltonian Mean Field (HMF) model. We give a short presentation of its equilibrium properties and present the numerical evidence of the existence of QSSs. Then, we discuss an analytical approach to the characterization of QSSs, pioneered by Lynden-Bell, that uses a maximum entropy principle. This approach captures some macroscopic features of QSSs and predicts the existence of phase transitions from homogeneous to inhomogeneous QSSs, which are then verified successfully in numerical experiments on the HMF model. The HMF model is defined on a lattice where all sites are coupled with equal strength. We here generalize the model to one where only a fraction of pairs of N sites are coupled, in such a way that the number of links scales as N L N γ with 1 < γ < 2. We present numerical evidence that QSSs exist in all this range of values of γ and that their lifetime scales as N α(γ−1) with α = 1.5 for homogeneous QSSs and α = 1 for inhomogenous QSSs. We devote this paper to George W. Zaslavsky, who introduced long ago a model similar to the HMF in order to study structural transitions in crystals. George was also interested in two-dimensional hydrodynamics, and in particular in the point vortex model, which also shows QSSs, and has more recently developed a theoretical approach to lattices with long-range interactions, for which the kinetic equations turn out to possess fractional derivatives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antoni M. and Ruffo S., 1995, Clustering and relaxation in Hamiltonian long-range dynamics, Physical Review E, 52, 2361–2374.

    Article  ADS  Google Scholar 

  • Antoniazzi A., Califano R, Fanelli D. and Ruffo S., 2007, Exploring the thermodynamic limit of Hamiltonian models: Convergence to the Vlasov Equation, Physical Review Letters, 98, 150602.

    Article  ADS  Google Scholar 

  • Antoniazzi A., Fanelli D., Ruffo S. and Yamaguchi Y.Y., 2007, Nonequilibrium tri-critical point in a system with long-range interactions, Physical Review Letters, 99,040601.

    Article  ADS  Google Scholar 

  • Barré J., Ciani A., Fanelli D., Bagnoli F. and Ruffo S., 2009, Finite size effects for the ising model on random graphs with varying dilution, Physica A, 388, 3414–3425.

    Article  ADS  Google Scholar 

  • Barré J., Dauxois T., De Ninno G., Fanelli D. and Ruffo S., 2004, Statistical theory of high-gain free-electron laser saturation, Physical Review E, Rapid Communication, 69, 045501 (R).

    ADS  Google Scholar 

  • Barré J. and Goncalves B., 2007, Ensemble inequivalence in random graphs, Physica A, 386, 212–218

    Article  MathSciNet  ADS  Google Scholar 

  • Barré J., Mukamel D. and Ruffo S., 2001, Inequivalence of ensembles in a system with long-range interactions, Physical Review Letters, 87, 030601.

    Article  ADS  Google Scholar 

  • Blume M., Emery V.J. and Griffiths R.B., 1971, Ising model for the λ transition and phase separation in He3-He4 mixtures, Physical Review A, 4, 1071–1077.

    Article  ADS  Google Scholar 

  • Bonifacio R., Casagrande F., Cerchioni G., De Salvo Souza L., Pierini P. and Piovella N., 1990, Physics of the high-gain FEL and superradiance, Rivista del Nuovo Cimento, 13, 1–69.

    Article  ADS  Google Scholar 

  • Braun W. and Hepp K., 1997, The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Communications in Mathematical Physics 56, 101–113.

    Article  MathSciNet  ADS  Google Scholar 

  • Caglioti E. and Rousset F., 2008, Long time estimates in the mean field limit, Archive for Rational Mechanics and Analysis, 190, 517–547.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Campa A., Dauxois T., Fanelli D. and Ruffo S., work in progress.

    Google Scholar 

  • Campa A., Dauxois T. and Ruffo S., 2009, Statistical mechanics and dynamics of solvable models with long-range interactions, Physics Reports, 480, 57–159.

    Article  MathSciNet  ADS  Google Scholar 

  • Campa A., Giansanti A. and Morelli G., 2007, Long-time behavior of quasistationary states of the Hamiltonian mean-field model, Physical Review E, 76, 041117.

    Article  MathSciNet  ADS  Google Scholar 

  • Campa A., Giansanti A., Morigi G. and Sylos Labini F., 2008, Dynamics and Ther-Modynamics of Systems with Long-range Interactions: Theory and Experiment, AIP Conference Proceedings, New York.

    Google Scholar 

  • Chavanis P.H., 2006, Lynden-Bell and Tsallis distributions for the HMF model, European Physical Journal B, 53, 487–501.

    Article  ADS  Google Scholar 

  • Chavanis P.H., Sommeria J. and Robert R., 1996, Statistical mechanics of two-dimensional vortices and collisionless Stellar systems, The Astrophysical Journal, 471, 385–399.

    Article  ADS  Google Scholar 

  • Creutz M., 1983, Microcanonical Monte Carlo simulation, Physical Review Letters, 50, 1411–1414.

    Article  MathSciNet  ADS  Google Scholar 

  • Dauxois T., Ruffo S., Arimondo E. and Wilkens M. (Eds.), 2002, Dynamics and Thermodynamics of Systems with Long Range Interactions, Springer, New York.

    Google Scholar 

  • Dauxois T., Ruffo S. and Cugliandolo L.F. (Eds.), 2009, Long-range Interacting Systems, Oxford University Press, Oxford.

    Google Scholar 

  • Del Castillo-Negrete D., 1998, Nonlinear evolution of perturbations in marginally stable plasmas, Physics Letters A, 241, 99–104.

    Article  ADS  Google Scholar 

  • Elskens Y. and Escande D., 2002, Microscopic Dynamics of Plasmas and Chaos, IOP Publishing, Bristol.

    Google Scholar 

  • Erdös P. and Rényi A., 1959, On random graphs, Publicationes Mathematicae Debrencen, 6, 290.

    MATH  Google Scholar 

  • Eyink G.L. and Sreenivasan K.R., 2006, Onsager and the theory of hydrodynamic turbulence, Rev. Mod. Phys., 78, 87–135.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hénon M., 1964, L’évolution initiale d’un amas sphérique, Annales d’Astrophysique, 27, 83–91.

    ADS  Google Scholar 

  • Inagaki S., 1993, thermodynamic stability of modified Konishi-Kaneko system, Progress in Theoretical Physics, 90, 577–584.

    Article  ADS  Google Scholar 

  • Kac M., Uhlenbeck G.E. and Hemmer P.C., 1963, On the van der Waals theory of the vapor-liquid equilibrium. I. discussion of a one-dimensional model, Journal of Mathematical Physics, 4, 216–228.

    Article  MathSciNet  ADS  Google Scholar 

  • Latora V., Rapisarda A. and Ruffo S., 1998, Lyapunov instability and finite size effects in a system with long-range forces, Physical Review Letters, 80, 692–695.

    Article  ADS  Google Scholar 

  • Latora V., Rapisarda A. and Tsallis C, 2001, Non-Gaussian equilibrium in a long-range Hamiltonian system, Physical Review E, 64, 056134.

    Article  ADS  Google Scholar 

  • Leoncini X., Kusnetsov L. and Zaslavsky G.M., 2004, Evidence of fractional transport in point vortex flow, Chaos, Solitons and Fractals, 19, 259–273.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lynden-Bell D., 1967, Statistical mechanics of violent relaxation in stellar systems, Monthly Notices of the Royal Astronomical Society, 136, 101–121.

    ADS  Google Scholar 

  • Mc Lachlan R.I. and Atela R, 1992, The accuracy of symplectic integrators, Nonlinearity, 5, 541–562.

    Article  MathSciNet  ADS  Google Scholar 

  • Miller J., 1990, Statistical mechanics of Euler equations in two dimensions, Physical Review Letters, 65, 2137–2140.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Moyano L.G. and Anteneodo C, 2006, Diffusive anomalies in a long-range Hamiltonian system, Physical Review E, 74, 021118.

    Article  MathSciNet  ADS  Google Scholar 

  • Mukamel D., Ruffo S. and Schreiber N., 2005, Breaking of Ergodicity and Long Relaxation Times in Systems with Long-Range Interactions, Physical Review Letters, 95, 240604.

    Article  ADS  Google Scholar 

  • Nicholson D.R., 1983, Introduction to Plasma Theory, John Wiley, New York.

    Google Scholar 

  • P. J. E. Peebles, 1980, The Large-scale Structure of the Universe, Princeton University Press, Princeton

    Google Scholar 

  • Pluchino A., Latora V. and Rapisarda A., 2004, Glassy phase in the Hamiltonian mean-field model, Physical Review E, 69, 056113.

    Article  ADS  Google Scholar 

  • Pluchino A. and Rapisarda A., 2007, Anomalous diffusion and quasistationarity in the HMF model, AIP Conf Proc, 965, 129–136.

    Article  ADS  Google Scholar 

  • Ruffo S., 1994, Hamiltonian dynamics and phase transitions, Marseille Conference on Chaos, Transport and Plasma Physics, edited by S. Benkadda et al., 114–119.

    Google Scholar 

  • Serva M., 2009, Magnetization densities as replica parameters: the dilute ferromagnet, submitted to Physica A.

    Google Scholar 

  • H. Touchette, 2009, The large deviation approach to statistical mechanics, Physics Reports, 478, 1–69.

    Article  MathSciNet  ADS  Google Scholar 

  • Yamaguchi Y.Y., Barré J., Bouchet F., Dauxois T. and Ruffo S., 2004, Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model, Physica A, 337, 36–66.

    Article  ADS  Google Scholar 

  • Zaslavskii G.M., Shabanov V.F., Aleksandrov K.S. and Aleksandrova I.P., 1977, A model for a phase transition due to nonlinear resonance of lattice vibrations, Soviet Physics JETP, 45, 315.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ciani, A., Fanelli, D., Ruffo, S. (2010). Long-range Interactions and Diluted Networks. In: Luo, A.C.J., Afraimovich, V. (eds) Long-range Interactions, Stochasticity and Fractional Dynamics. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12343-6_3

Download citation

Publish with us

Policies and ethics