Skip to main content

Trends in Rhizobial Evolution and Some Taxonomic Remarks

  • Chapter
  • First Online:
Evolutionary Biology – Concepts, Molecular and Morphological Evolution

Abstract

Bacteria that establish nitrogen-fixing symbiosis in specialized plant structures belong to only three of over 100 bacterial phyla. Among these, rhizobial symbioses are the best known and nodulation genes (nod) have been described in many species. nodA phylogenies revealed a larger diversity in Bradyrhizobium than in other genera and suggest that bradyrhizobial nod genes are the oldest in agreement to the proposal that nod genes evolved in Bradyrhizobium (Plant Soil 161:11–20, 1994). In many cases, rhizobial symbiotic and housekeeping genes have different evolutionary histories in relation to the lateral transfer of symbiotic genes among bacteria. Misclassified Rhizobium strains were identified, to properly identify rhizobial species we propose the use of fragments of the rpoB and dnaK genes, which according to probability analyses reflect the behavior of whole genes. With these analyses several rhizobial species related to Agrobacterium tumefaciens may be reclassified to a genus other than Rhizobium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre A, Laranjo M, Young JPW, Oliveira S (2008) dnaJ is a useful phylogenetic marker for alphaproteobacteria. Int J Syst Evol Microbiol 58:2839–2849

    Article  PubMed  CAS  Google Scholar 

  • Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrere S, Cruveiller S, Dossat C, Lajus A, Marchetti M, Poinsot V, Rouy Z, Servin B, Saad M, Schenowitz C, Barbe V, Batut J, Medigue C, Masson-Boivin C (2008) Genome sequence of the beta-Rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483

    Article  PubMed  CAS  Google Scholar 

  • Andronov EE, Terefework Z, Roumiantseva ML, Dzyubenko NI, Onichtchouk OP, Kurchak ON, Dresler-Nurmi A, Young JPW, Simarov BV, Lindstroem K (2003) Symbiotic and genetic diversity of Rhizobium galegae isolates collected from the Galega orientalis gene center in the Caucasus. Appl Environ Microbiol 69:1067–1074

    Article  PubMed  CAS  Google Scholar 

  • Atkinson EM, Palcic MM, Hindsgaul O, Long SR (1994) Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod factors: NodA is required for an N-acyltransferase activity. Proc Natl Acad Sci USA 91:8418–8422

    Article  PubMed  CAS  Google Scholar 

  • Baev N, Endre G, Petrovics G, Banfalvi Z, Kondorosi A (1991) Six nodulation genes of nod box locus 4 in Rhizobium meliloti are involved in nodulation signal production: nodM codes for D-glucosamine synthetase. Mol Gen Genet 228:113–124

    Article  PubMed  CAS  Google Scholar 

  • Barnett MJ, Fisher RF (2006) Global gene expression in the rhizobial-legume symbiosis. Symbiosis 42:1–24

    CAS  Google Scholar 

  • Barrera LL, Trujillo ME, Goodfellow M, Garcia FJ, Hernandez-Lucas I, Davila G, van Berkum P, Martinez-Romero E (1997) Biodiversity of bradyrhizobia nodulating Lupinus spp. Int J Syst Bacteriol 47:1086–1091

    Article  PubMed  CAS  Google Scholar 

  • Case RJ, Boucher Y, Dahlloef I, Holmstroem C, Doolittle WF, Kjelleberg S (2007) Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 73:278–288

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Ramírez S, González V (2008) Factors affecting the concordance between orthologous gene trees and species tree in bacteria. BMC Evol Biol 8:300

    Article  PubMed  Google Scholar 

  • Castillo-Ramirez S, Vazquez-Castellanos JF, Gonzalez V, Cevallos MA (2009) Horizontal gene transfer and diverse functional constrains within a common replication-partitioning system in Alphaproteobacteria: the repABC operon. BMC Genomics 10:536

    Article  PubMed  Google Scholar 

  • Catoira R, Galera C, De Billy F, Penmetsa RV, Journet E-P, Maillet F, Rosenberg C, Cook D, Gough C, Denarie J (2000) Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell 12:1647–1666

    PubMed  CAS  Google Scholar 

  • Chen W-M, Moulin L, Bontemps C, Vandamme P, Bena G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by β-Proteobacteria is widespread in nature. J Bacteriol 185:7266–7272

    Article  PubMed  CAS  Google Scholar 

  • Crossman LC, Castillo-Ramírez S, McAnnula C, Lozano L, Vernikos GS, Acosta JL, Ghazoui ZF, Hernández-González I, Meakin G, Walker AW, Hynes MF, Young JPW, Downie JA, Romero D, Johnston AWB, Dávila G, Parkhill J, González V (2008) A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria. PLoS ONE 3(7):e2567

    Article  PubMed  Google Scholar 

  • Dahlloef I, Baillie H, Kjelleberg S (2000) rpoB-based microbial community analysis avoids limitations inherent in 16s rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66:3376–3380

    Article  Google Scholar 

  • Debellé F, Plazanet C, Roche P, Pujol C, Savagnac A, Rosenberg C, Prome J-C, Denarie J (1996a) The NodA proteins of Rhizobium meliloti and Rhizobium tropici specify the N-acylation of Nod factors by different fatty acids. Mol Microbiol 22:303–314

    Article  PubMed  Google Scholar 

  • Debellé F, Yang GP, Ferro M, Truchet G, Promé JC, Dénarié J (1996b) Rhizobium nodulation factors in perspective. In: Legocki A, Bothe H, Pühler A (eds) Biological fixation of nitrogen for ecology and sustainable agriculture. Springer, Heidelberg, Germany, pp 15–24

    Google Scholar 

  • Delgado-Salinas A, Bibler R, Lavin M (2006) Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Syst Bot 31:779–791

    Article  Google Scholar 

  • Dénarié J, Debellé F, Promé JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    Article  PubMed  Google Scholar 

  • Evans IJ, Downie JA (1986) The nodI gene product of Rhizobium leguminosarum is closely related to ATP-binding bacterial transport proteins; nucleotide sequence analysis of the nodI and nodJ genes. Gene 43:95–101

    Article  PubMed  CAS  Google Scholar 

  • Farrand SK, van Berkum PB, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Lorquin J, Ba S, Sanon K, Promé JC, Boivin C (2000) Bradyrhizobium sp. strains that nodulate the leguminous tree Acacia albida produce fucosylated and partially sulfated Nod factors. Appl Environ Microbiol 66:5078–5082

    Article  PubMed  CAS  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Peret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc Natl Acad Sci USA 105:4928–4932

    Article  PubMed  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Dénarié J (1997) Red carpet genetic programmes for root endosymbioses. Trends Plant Sci 2:371–372

    Article  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre J-C, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang W-S, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Vermeglio A, Medigue C, Sadowsky M (2007) Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312

    Article  PubMed  Google Scholar 

  • Gonzalez V, Santamaria RI, Bustos P, Hernandez-Gonzalez I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramirez MA, Jimenez-Jacinto V, Collado-Vides J, Davila G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 103:3834–3839

    Article  PubMed  Google Scholar 

  • González V, Acosta JL, Santamaría RI, Bustos P, Fernández JL, Hernández González IL, Díaz R, Flores M, Palacios R, Mora J, Dávila G (2010) Conserved symbiotic plasmid DNA sequences in the multireplicon pangenomic structure of Rhizobium etli. Appl Environ Microbiol 76:1604–1614

    Article  PubMed  Google Scholar 

  • Gupta RS (2005) Protein signatures distinctive of α-Proteobacteria and its subgroups and a model for α-proteobacterial evolution. Crit Rev Microbiol 31:101–135

    Article  PubMed  CAS  Google Scholar 

  • Han TX, Wang ET, Han LL, Chen WF, Sui XH, Chen WX (2008) Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Syst Appl Microbiol 31:287–301

    Article  PubMed  Google Scholar 

  • Haukka K, Lindstrom K, Young JPW (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426

    PubMed  CAS  Google Scholar 

  • Hungria M, Vargas MAT, Campo RJ, Chueire LMO, Andrade DS (2000) The Brazilian experience with the soybean (Glycine max) and common bean (Phaseolus vulgaris) symbioses. In: Pedrosa FO, Hungria M, Yates G, Newton WE (eds) Nitrogen fixation: from molecules to crop production. Kluwer Academic Publishers, Netherlands, p 515

    Google Scholar 

  • Hungria M, Franchini JC, Campo RJ, Graham PH (2005) The importance of nitrogen fixation to soybean cropping in South America. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordrecht, pp 25–42

    Chapter  Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    Article  PubMed  CAS  Google Scholar 

  • Jordan DC (1984) Family III. Rhizobiaceae Conn 1938, 321AL. In: Krieg NR, Holt JG (eds) Bergeys’s manual of systematic bacteriology, vol 1. The Williams and Wilkins Co., Baltimore, pp 234–254

    Google Scholar 

  • Kondorosi E, Banfalvi Z, Kondorosi A (1984) Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: identification of nodulation genes. Mol Gen Genet 193:445–452

    Article  CAS  Google Scholar 

  • Kondorosi E, Pierre M, Cren M, Haumann U, Buire M, Hoffmann B, Schell J, Kondorosi A (1991) Identification of NolR, a negative transacting factor controlling the nod regulon in Rhizobium meliloti. J Mol Biol 222:885–896

    Article  PubMed  CAS  Google Scholar 

  • Laurie JI, Clarke JH, Ciruela A, Faulds CB, Williamson G, Gilbert HJ, Rixon JE, Millward-Sadler J, Hazlewood GP (1997) The NodB domain of a multidomain xylanase from Cellulomonas fimi deacetylates acetylxylan. FEMS Microbiol Lett 148:261–264

    Article  CAS  Google Scholar 

  • Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784

    Article  PubMed  CAS  Google Scholar 

  • Lian B, Prithiviraj B, Souleimanov A, Smith DL (2001) Evidence for the production of chemical compounds analogous to nod factor by the silicate bacterium Bacillus circulans GY92. Microbiol Res 156:289–292

    Article  PubMed  CAS  Google Scholar 

  • Lloret L, Ormeño-Orrillo E, Rincón R, Martínez-Romero J, Rogel-Hernández MA, Martínez-Romero E (2007) Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst Appl Microbiol 30:280–290

    Article  PubMed  CAS  Google Scholar 

  • Long SR, Buikema WJ, Ausubel FM (1983) Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nod-mutants. Nature 298:485–487

    Article  Google Scholar 

  • López-López A, Rosenblueth M, Martínez J, Martínez-Romero E (2010) Rhizobial symbioses in tropical legumes and non-legumes. In: Dion P (ed) Soil biology and agriculture in the tropics. Springer Heidelberg, pp. 163–184

    Google Scholar 

  • Martinez E, Palacios R, Sanchez F (1987) Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J Bacteriol 169:2828–2834

    PubMed  CAS  Google Scholar 

  • Martínez E, Laeremans T, Poupot R, Rogel MA, Lopez L, García F, Vanderleyden J, Promé JC, Lara F (1995) Nod metabolites and other compounds excreted by Rhizobium spp. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE (eds) Nitrogen fixation: fundamentals and applications. Kluwer Academic Publishers, Dordrecht, pp 281–286

    Chapter  Google Scholar 

  • Martinez-Romero E (1994) Recent developments in Rhizobium taxonomy. Plant Soil 161:11–20

    Article  CAS  Google Scholar 

  • Martinez-Romero E (2009) Coevolution in Rhizobium-legume symbiosis? DNA Cell Biol 28:361–370

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Romero E (1996) Comments on Rhizobium systematics. Lessons from R. tropici and R. etli. In: Stacey G, Mullin B, Gresshoff PM (eds) Biology of plant–microbe interactions. International Society for Molecular Plant–Microbe Interactions, St. Paul, Minnesota, pp 503–508

    Google Scholar 

  • Moreira FMS, Haukka K, Young JPW (1998) Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Mol Ecol 7:889–895

    Article  PubMed  CAS  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the β−subclass of Proteobacteria. Nature 411:948–950

    Article  PubMed  CAS  Google Scholar 

  • Moulin L, Bena G, Boivin-Masson C, Stepkowski T (2004) Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 30:720–732

    Article  PubMed  CAS  Google Scholar 

  • Mulligan JT, Long SR (1985) Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc Natl Acad Sci USA 82:6609–6613

    Article  PubMed  CAS  Google Scholar 

  • Nandasena KG, O'Hara GW, Tiwari RP, Sezmiş E, Howieson JG (2007) In situ lateral transfer of symbiosis islands results in rapid evolution of diverse competitive strains of mesorhizobia suboptimal in symbiotic nitrogen fixation on the pasture legume Biserrula pelecinus L. Environ Microbiol 9:2496–2511

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd GED, Harrison MJ, Udvardi M (2005) Peace talks and trade deals. Keys to long-term harmony in legume-microbe symbioses. Plant Physiol 137:1205–1210

    Article  PubMed  CAS  Google Scholar 

  • Ormeño-Orrillo E, Vinuesa P, Zuniga-Davila D, Martinez-Romero E (2006) Molecular diversity of native bradyrhizobia isolated from Lima bean (Phaseolus lunatus L.) in Peru. Syst Appl Microbiol 29:253–262

    Article  PubMed  Google Scholar 

  • Parker MA (2004) rRNA and dnaK relationships of Bradyrhizobium sp. nodule bacteria from four Papilionoid legume trees in Costa Rica. Syst Appl Microbiol 27:334–342

    Article  PubMed  CAS  Google Scholar 

  • Perret X, Staehelin Ch, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  PubMed  CAS  Google Scholar 

  • Planet P, Jagoueix S, Bove JM, Garnier M (1995) Detection and characterization of the African citrus greening Liberobacter by amplification, cloning, and sequencing of the rplKAJL-rpoBC operon. Curr Microbiol 30:137–141

    Article  PubMed  CAS  Google Scholar 

  • Provorov NA, Vorobyov NI (2008) Equilibrium between the “genuine mutualists” and “symbiotic cheaters” in the bacterial population co-evolving with plants in a facultative symbiosis. Theor Popul Biol 74:345–355

    Article  PubMed  Google Scholar 

  • Qian J, Kwon S, Parker MA (2003) rRNA and nifD phylogeny of Bradyrhizobium from sites across the Pacific Basin. FEMS Microbiol Lett 219:159–165

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martínez-Molina E, Velázquez E (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58:2484–2490

    Article  PubMed  Google Scholar 

  • Relic B, Perret X, Estrada-Garcia MT, Kopcinska J, Golinowski W, Krishnan HB, Pueppke SG, Broughton WJ (1994) Nod factors of Rhizobium are a key to the legume door. Mol Microbiol 13:171–178

    Article  PubMed  CAS  Google Scholar 

  • Rincon-Rosales R, Lloret L, Ponce E, Martinez-Romero E (2009) Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum. FEMS Microbiol Ecol 68:255–255

    Article  PubMed  CAS  Google Scholar 

  • Rivas R, Velazquez E, Willems A, Vizcaino N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martinez-Molina E (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) Druce. Appl Environ Microbiol 68:5217–5222

    Article  PubMed  CAS  Google Scholar 

  • Roche P, Maillet F, Plazanet C, Debelle F, Ferro M, Truchet G, Prome J-C, Denarie J (1996) The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc Natl Acad Sci USA 93:15305–15310

    Article  PubMed  CAS  Google Scholar 

  • Rogel MA, Torres C, Lloret L, Rosenblueth M, Hernández-Lucas I, Martínez L, Martínez J, Martínez-Romero E (2006) Lateral transfer of Rhizobium symbiotic plasmids leading to genomic innovation. In: Sánchez F, Quinto C, López-Lara IM, Geiger O (eds) Biology of plant–microbe interactions, vol 5. International Society for Molecular Plant–Microbe Interactions, St. Paul, USA, pp 310–318

    Google Scholar 

  • Roncato-Maccari LDB, Ramos HJO, Pedrosa FO, Alquini Y, Chubatsu LS, Yates MG, Rigo LU, Steffens MBR, Souza EM (2003) Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 45:39–47

    Article  PubMed  CAS  Google Scholar 

  • Rosenblueth M, Martinez L, Silva J, Martinez-Romero E (2004) Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol 27:27–35

    Article  PubMed  CAS  Google Scholar 

  • Sachman-Ruiz B, Castillo-Rodal AI, López-Vidal Y, Martínez-Romero E, Vinuesa P (2009) Diversity of environmental mycobacteria in Mexican rivers assessed by cultivation and metagenomics approaches. In: 109th General Meeting, American Society for Microbiology, May 17–21, 2009, Philadelphia, Pennsylvania

    Google Scholar 

  • Sessitsch A, Howieson JG, Perret X, Antoun H, Martinez-Romero E (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323–378

    Article  CAS  Google Scholar 

  • Silva C, Vinuesa P, Eguiarte LE, Souza V, Martinez-Romero E (2005) Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes. Mol Ecol 14:4033–4050

    Article  PubMed  CAS  Google Scholar 

  • Sprent JI (1997) Co-evolution of legume-rhizobial symbioses:is it essential for either partner? In: Legocki A, Bothe H, Pühler A (eds) Biological fixation of nitrogen for ecology and sustainable agriculture. Springer, Heidelberg, Germany, pp 313–316

    Chapter  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Botanic Gardens, Kew, UK

    Google Scholar 

  • Staehelin C, Schultze M, Kondorosi E, Mellor RB, Boller T, Kondorosi A (1994) Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chitinases. Plant J 5:319–330

    Article  CAS  Google Scholar 

  • Steenkamp ET, Stepkowski T, Przymusiak A, Botha WJ, Law IJ (2008) Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Mol Phylogenet Evol 48:1131–1144

    Article  PubMed  CAS  Google Scholar 

  • Stepkowski T, Hughes CE, Law IJ, Markiewicz L, Gurda D, Chlebicka A, Moulin L (2007) Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl Environ Microbiol 73:3254–3264

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JT, Ronson CW (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci USA 95:5145–5149

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci USA 92:8985–8989

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, de Bruijn FJ, Ronson CW (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184:3086–3095

    Article  PubMed  CAS  Google Scholar 

  • Suominen L, Roos C, Lortet G, Paulin L, Lindstroem K (2001) Identification and structure of the Rhizobium galegae common nodulation genes: evidence for horizontal gene transfer. Mol Biol Evol 18:907–916

    Article  PubMed  CAS  Google Scholar 

  • Terefework Z, Lortet G, Suominenl LK (2000) Molecular evolution of interactions between rhizobia and their legume hosts. In: Triplett E (ed) Prokaryotic nitrogen fixation: a model for analysis of a biological process. Horizon Scientific Press, Norfolk, England, pp 187–206

    Google Scholar 

  • Tian CF, Wang ET, Han TX, Sui XH, Chen WX (2007) Genetic diversity of rhizobia associated with Vicia faba in three ecological regions of China. Arch Microbiol 188:273–282

    Article  PubMed  CAS  Google Scholar 

  • Tian CF, Wang ET, Wu LJ, Han TX, Chen WF, Gu CT, Gu JG, Chen WX (2008) Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int J Syst Evol Microbiol 58:2871–2875

    Article  PubMed  CAS  Google Scholar 

  • Toledo I, Lloret L, Martínez-Romero E (2003) Sinorhizobium americanum sp. nov., a new Sinorhizobium species modulating native Acacia spp. in Mexico. Syst Appl Microbiol 26:54–64

    Article  PubMed  CAS  Google Scholar 

  • Valverde A, Velazquez E, Fernandez-Santos F, Vizcaino N, Rivas R, Mateos PF, Martinez-Molina E, Igual JM, Willems A (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989

    Article  PubMed  CAS  Google Scholar 

  • Vazquez M, Davalos A, de las Peñas A, Sanchez F, Quinto C (1991) Novel organization of the common nodulaiton genes in Rhizobium leguminosarum bv. phaseoli strains. J Bacteriol 173:1250–1258

    PubMed  CAS  Google Scholar 

  • Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Pérez-Galdona R, Werner D, Martínez-Romero E (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575

    Article  PubMed  CAS  Google Scholar 

  • Wang ET, Martínez-Romero E (2000) Phylogeny of root- and stem-nodule bacteria associated with legumes. In: Triplett E (ed) Prokaryotic nitrogen fixation: a model for analysis of a biological process. Horizon Scientific Press, Norfolk, England, pp 177–186

    Google Scholar 

  • Wang ET, Rogel MA, García-De los Santos A, Martínez-Romero J, Cevallos MA, Martínez-Romero E (1999a) Rhizobium etli bv. mimosae, a novel biovar isolated from Mimosa affinis. Int J Syst Bacteriol 49:1479–1491

    Article  PubMed  CAS  Google Scholar 

  • Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martinez-Romero E (1999b) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65

    Article  PubMed  Google Scholar 

  • Wernegreen JJ, Riley MA (1999) Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol Biol Evol 16:98–113

    Article  PubMed  CAS  Google Scholar 

  • Young JPW, Johnston AWB (1989) The evolution of specificity in the legume-Rhizobium symbiosis. Trends Ecol Evol 4:341–349

    Article  PubMed  CAS  Google Scholar 

  • Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicolade Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103

    Article  PubMed  CAS  Google Scholar 

  • Young JPW, Mutch LA, Ashford DA, Zézé A, Mutch KE (2003) The molecular evolution of host specificity in the Rhizobium-legume symbiosis. In: Hails R, Godfray HJC, Beringer JE (eds) Genes in the environment. Blackwell Science, Oxford, pp 245–257

    Google Scholar 

  • Young JPW, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson ARJ, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Za H, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

To PAPIIT IN200709 and Michael Dunn for reading the manuscript. Partial financial support for this project was from GEF PNUMA, TSBF-CIAT. E.M. is grateful to DGAPA UNAM for a postdoctoral fellowship during her sabattical year at UC Davis in California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esperanza Martínez-Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martínez-Romero, J.C., Ormeño-Orrillo, E., Rogel, M.A., López-López, A., Martínez-Romero, E. (2010). Trends in Rhizobial Evolution and Some Taxonomic Remarks. In: Pontarotti, P. (eds) Evolutionary Biology – Concepts, Molecular and Morphological Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12340-5_18

Download citation

Publish with us

Policies and ethics