Skip to main content

Multidrug Resistance in Fungi: The Role of Pleiotropic Drug Resistance Genes

  • Chapter
  • First Online:
Book cover Combating Fungal Infections
  • 1465 Accesses

Abstract

Multidrug resistance of pathogenic fungi to antifungal agents is a major impediment in combating fungal infections. Clinically important resistance of fungal pathogens to azoles and other antifungal drugs is often caused by overexpression of energy-dependent drug efflux pumps able to facilitate the efflux of drugs from the cells. The efflux pump proteins which belong to the ATP-binding cassette and major facilitator superfamilies are the most prominent contributors to multidrug resistance (MDR). The abundance of the drug transporters and their wider specificity suggest that these transporters are not exclusively drug exporters but also have other cellular functions. In this chapter, we focus on the role played by pleiotropic drug resistance genes in MDR, and their physiological relevance in lipid homeostasis of nonpathogenic and pathogenic fungal species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarco AM, Balan I, Talibi D, Mainville N, Raymond M (1997) AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily. J Biol Chem 272:19304–19313

    Article  PubMed  CAS  Google Scholar 

  • Andrade AC, Del Sorbo G, Van Nistelrooy JG, Waard MA (2000a) The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology 146:1987–1997

    PubMed  CAS  Google Scholar 

  • Andrade AC, Van Nistelrooy JG, Peery RB, Skatrud PL, De Waard MA (2000b) The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production. Mol Gen Genet 263:966–977

    Article  PubMed  CAS  Google Scholar 

  • Angermayr K, Parson W, Stoffler G, Haas H (1999) Expression of atrC — encoding a novel member of the ATP binding cassette transporter family in Aspergillus nidulans — is sensitive to cycloheximide. Biochim Biophys Acta 1453:304–310

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MB, Costanzo MC, Skrzypek MS et al (2007) Sequence resources at the Candida genome database. Nucleic Acids Res 35:D452–D456

    Article  PubMed  CAS  Google Scholar 

  • Balzi E, Goffeau A (1995) Yeast multidrug resistance: the PDR network. J Bioenerg Biomembr 27:71–76

    Article  PubMed  CAS  Google Scholar 

  • Balzi E, Wang M, Leterme S, Van Dyck L, Goffeau A (1994) PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1. J Biol Chem 269:2206–2214

    PubMed  CAS  Google Scholar 

  • Barchiesi F, Calabrese D, Sanglard D et al (2000) Experimental induction of fluconazole resistance in Candida tropicalis ATCC 750. Antimicrob Agents Chemother 44:1578–1584

    Article  PubMed  CAS  Google Scholar 

  • Bauer BE, Wolfger H, Kuchler K (1999) Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. Biochim Biophys Acta 1461:217–236

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yaacov R, Knoller S, Caldwell GA, Becker JM, Koltin Y (1994) Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrob Agents Chemother 38:648–652

    Article  PubMed  CAS  Google Scholar 

  • Bennett JE, Izumikawa K, Marr KA (2004) Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicrob Agents Chemother 48:1773–1777

    Article  PubMed  CAS  Google Scholar 

  • Bissinger PH, Kuchler K (1994) Molecular cloning and expression of the Saccharomyces cerevisiae STS1 gene product. A yeast ABC transporter conferring mycotoxin resistance. J Biol Chem 269:4180–4186

    PubMed  CAS  Google Scholar 

  • Broco N, Tenreiro S, Viegas CA, Sa-Correia I (1999) FLR1 gene (ORF YBR008c) is required for benomyl and methotrexate resistance in Saccharomyces cerevisiae and its benomyl-induced expression is dependent on pdr3 transcriptional regulator. Yeast 15:1595–1608

    Article  PubMed  CAS  Google Scholar 

  • Calabrese D, Bille J, Sanglard D (2000) A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology 146:2743–2754

    PubMed  CAS  Google Scholar 

  • Cannon RD, Lamping E, Holmes AR et al (2009) Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 22:291–321

    Article  PubMed  CAS  Google Scholar 

  • Cauet G, Degryse E, Ledoux C, Spagnoli R, Achstetter T (1999) Pregnenolone esterification in Saccharomyces cerevisiae. A potential detoxification mechanism. Eur J Biochem 261:317–324

    Article  PubMed  CAS  Google Scholar 

  • Chang G (2003) Multidrug resistance ABC transporters. FEBS Lett 555:102–105

    Article  PubMed  CAS  Google Scholar 

  • Chang G, Roth CB (2001) Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science 293:1793–1800

    Article  PubMed  CAS  Google Scholar 

  • Chen KH, Miyazaki T, Tsai HF, Bennett JE (2007) The bZip transcription factor Cgap1p is involved in multidrug resistance and required for activation of multidrug transporter gene CgFLR1 in Candida glabrata. Gene 386:63–72

    Article  PubMed  CAS  Google Scholar 

  • Chung N, Jenkins G, Hannun YA, Heitman J, Obeid LM (2000) Sphingolipids signal heat stress-induced ubiquitin-dependent proteolysis. J Biol Chem 275:17229–17232

    Article  PubMed  CAS  Google Scholar 

  • Cui Z, Hirata D, Tsuchiya E, Osada H, Miyakawa T (1996) The multidrug resistance-associated protein (MRP) subfamily (Yrs1/Yor1) of Saccharomyces cerevisiae is important for the tolerance to a broad range of organic anions. J Biol Chem 271:14712–14716

    Article  PubMed  CAS  Google Scholar 

  • Dawson RJ, Locher KP (2007) Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581:935–938

    Article  PubMed  CAS  Google Scholar 

  • Dean M, Allikmets R (1995) Evolution of ATP-binding cassette transporter genes. Curr Opin Genet Dev 5:779–785

    Article  PubMed  CAS  Google Scholar 

  • Decottignies A, Goffeau A (1997) Complete inventory of the yeast ABC proteins. Nat Genet 15:137–145

    Article  PubMed  CAS  Google Scholar 

  • Decottignies A, Grant AM, Nichols JW, de Wet H, McIntosh DB, Goffeau A (1998) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273:12612–12622

    Article  PubMed  CAS  Google Scholar 

  • Del Sorbo G, Schoonbeek H, De Waard MA (2000) Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol 30:1–15

    Article  PubMed  Google Scholar 

  • Del Sorbo G, Andrade AC, Van Nistelrooy JG, Van Kan JA, Balzi E, De Waard MA (1997) Multidrug resistance in Aspergillus nidulans involves novel ATP-binding cassette transporters. Mol Gen Genet 254:417–426

    Article  PubMed  Google Scholar 

  • DeRisi J, van den Hazel B, Marc P, Balzi E, Brown P, Jacq C, Goffeau A (2000) Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants. FEBS Lett 470:156–160

    Article  PubMed  CAS  Google Scholar 

  • Diaz C, Schroit AJ (1996) Role of translocases in the generation of phosphatidylserine asymmetry. J Membr Biol 151:1–9

    Article  PubMed  CAS  Google Scholar 

  • Dickson RC, Nagiec EE, Wells GB, Nagiec MM, Lester RL (1997) Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene. J Biol Chem 272:29620–29625

    Article  PubMed  CAS  Google Scholar 

  • Dogra S, Krishnamurthy S, Gupta V, Dixit BL, Gupta CM, Sanglard D, Prasad R (1999) Asymmetric distribution of phosphatidylethanolamine in C. albicans: possible mediation by CDR1, a multidrug transporter belonging to ATP binding cassette (ABC) superfamily. Yeast 15:111–121

    Article  PubMed  CAS  Google Scholar 

  • Dubikovskaya EA, Thorne SH, Pillow TH, Contag CH, Wender PA (2008) Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc Natl Acad Sci U S A 105:12128–12133

    Article  PubMed  CAS  Google Scholar 

  • Egner R, Bauer BE, Kuchler K (2000) The transmembrane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility. Mol Microbiol 35:1255–1263

    Article  PubMed  CAS  Google Scholar 

  • Egner R, Rosenthal FE, Kralli A, Sanglard D, Kuchler K (1998) Genetic separation of FK506 susceptibility and drug transport in the yeast Pdr5 ATP-binding cassette multidrug resistance transporter. Mol Biol Cell 9:523–543

    PubMed  CAS  Google Scholar 

  • Ehrenhofer-Murray AE, Seitz MU, Sengstag C (1998) The Sge1 protein of Saccharomyces cerevisiae is a membrane-associated multidrug transporter. Yeast 14:49–65

    Article  PubMed  CAS  Google Scholar 

  • Emter R, Heese-Peck A, Kralli A (2002) ERG6 and PDR5 regulate small lipophilic drug accumulation in yeast cells via distinct mechanisms. FEBS Lett 521:57–61

    Article  PubMed  CAS  Google Scholar 

  • Ernst R, Klemm R, Schmitt L, Kuchler K (2005) Yeast ATP-binding cassette transporters: cellular cleaning pumps. Methods Enzymol 400:460–484

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Ischer F, Calabrese D et al (2009) Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog 5:e1000268

    Article  PubMed  CAS  Google Scholar 

  • Fling ME, Kopf J, Tamarkin A, Gorman JA, Smith HA, Koltin Y (1991) Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet 227:318–329

    Article  PubMed  CAS  Google Scholar 

  • Ganapathi R, Grabowski D (1983) Enhancement of sensitivity to adriamycin in resistant P388 leukemia by the calmodulin inhibitor trifluoperazine. Cancer Res 43:3696–3699

    PubMed  CAS  Google Scholar 

  • Gaur M, Puri N, Manoharlal R, Rai V, Mukhopadhayay G, Choudhury D, Prasad R (2008) MFS transportome of the human pathogenic yeast Candida albicans. BMC Genomics 9:579

    Article  PubMed  CAS  Google Scholar 

  • Gbelska Y, Krijger JJ, Breunig KD (2006) Evolution of gene families: the multidrug resistance transporter genes in five related yeast species. FEMS Yeast Res 6:345–355

    Article  PubMed  CAS  Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001–5006

    Article  PubMed  CAS  Google Scholar 

  • Golin J, Ambudkar SV, Gottesman MM, Habib AD, Sczepanski J, Ziccardi W, May L (2003) Studies with novel Pdr5p substrates demonstrate a strong size dependence for xenobiotic efflux. J Biol Chem 278:5963–5969

    Article  PubMed  CAS  Google Scholar 

  • Golin J, Kon ZN, Wu CP et al (2007) Complete inhibition of the Pdr5p multidrug efflux pump ATPase activity by its transport substrate clotrimazole suggests that GTP as well as ATP may be used as an energy source. Biochemistry 46:13109–13119

    Article  PubMed  CAS  Google Scholar 

  • Gompel-Klein P, Brendel M (1990) Allelism of SNQ1 and ATR1, genes of the yeast Saccharomyces cerevisiae required for controlling sensitivity to 4-nitroquinoline-N-oxide and aminotriazole. Curr Genet 18:93–96

    Article  PubMed  CAS  Google Scholar 

  • Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    Article  PubMed  CAS  Google Scholar 

  • Gottesman MM, Hrycyna CA, Schoenlein PV, Germann UA, Pastan I (1995) Genetic analysis of the multidrug transporter. Annu Rev Genet 29:607–649

    Article  PubMed  CAS  Google Scholar 

  • Gulshan K, Moye-Rowley WS (2007) Multidrug resistance in fungi. Eukaryot Cell 6:1933–1942

    Article  PubMed  CAS  Google Scholar 

  • Hallstrom TC, Lambert L, Schorling S, Balzi E, Goffeau A, Moye-Rowley WS (2001) Coordinate control of sphingolipid biosynthesis and multidrug resistance in Saccharomyces cerevisiae. J Biol Chem 276:23674–23680

    Article  PubMed  CAS  Google Scholar 

  • Hanson L, May L, Tuma P et al (2005) The role of hydrogen bond acceptor groups in the interaction of substrates with Pdr5p, a major yeast drug transporter. Biochemistry 44:9703–9713

    Article  PubMed  CAS  Google Scholar 

  • Hanson PK, Grant AM, Nichols JW (2002) NBD-labeled phosphatidylcholine enters the yeast vacuole via the pre-vacuolar compartment. J Cell Sci 115:2725–2733

    PubMed  CAS  Google Scholar 

  • Hernaez ML, Gil C, Pla J, Nombela C (1998) Induced expression of the Candida albicans multidrug resistance gene CDR1 in response to fluconazole and other antifungals. Yeast 14:517–526

    Article  PubMed  CAS  Google Scholar 

  • Herrmann A, Devaux PF (1990) Alteration of the aminophospholipid translocase activity during in vivo and artificial aging of human erythrocytes. Biochim Biophys Acta 1027:41–46

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF (1995) The ABC of channel regulation. Cell 82:693–696

    Article  PubMed  CAS  Google Scholar 

  • Hiller D, Sanglard D, Morschhauser J (2006) Overexpression of the MDR1 gene is sufficient to confer increased resistance to toxic compounds in Candida albicans. Antimicrob Agents Chemother 50:1365–1371

    Article  PubMed  CAS  Google Scholar 

  • Hirata D, Yano K, Miyahara K, Miyakawa T (1994) Saccharomyces cerevisiae YDR1, which encodes a member of the ATP-binding cassette (ABC) superfamily, is required for multidrug resistance. Curr Genet 26:285–294

    Article  PubMed  CAS  Google Scholar 

  • Holmes AR, Lin YH, Niimi K et al (2008) ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob Agents Chemother 52:3851–3862

    Article  PubMed  CAS  Google Scholar 

  • Hyde SC, Emsley P, Hartshorn MJ et al (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346:362–365

    Article  PubMed  CAS  Google Scholar 

  • Jia XM, Ma ZP, Jia Y et al (2008) RTA2, a novel gene involved in azole resistance in Candida albicans. Biochem Biophys Res Commun 373:631–636

    Article  PubMed  CAS  Google Scholar 

  • Karababa M, Coste AT, Rognon B, Bille J, Sanglard D (2004) Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother 48:3064–3079

    Article  PubMed  CAS  Google Scholar 

  • Katiyar SK, Edlind TD (2001) Identification and expression of multidrug resistance-related ABC transporter genes in Candida krusei. Med Mycol 39:109–116

    PubMed  CAS  Google Scholar 

  • Katzmann DJ, Hallstrom TC, Voet M, Wysock W, Golin J, Volckaert G, Moye-Rowley WS (1995) Expression of an ATP-binding cassette transporter-encoding gene (YOR1) is required for oligomycin resistance in Saccharomyces cerevisiae. Mol Cell Biol 15:6875–6883

    PubMed  CAS  Google Scholar 

  • Kaur R, Bachhawat AK (1999) The yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae. Microbiology 145:809–818

    Article  PubMed  CAS  Google Scholar 

  • Kaur R, Castano I, Cormack BP (2004) Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob Agents Chemother 48:1600–1613

    Article  PubMed  CAS  Google Scholar 

  • Kean LS, Grant AM, Angeletti C, Mahe Y, Kuchler K, Fuller RS, Nichols JW (1997) Plasma membrane translocation of fluorescent-labeled phosphatidylethanolamine is controlled by transcription regulators, PDR1 and PDR3. J Cell Biol 138:255–270

    Article  PubMed  CAS  Google Scholar 

  • Kihara A, Igarashi Y (2002) Identification and characterization of a Saccharomyces cerevisiae gene, RSB1, involved in sphingoid long-chain base release. J Biol Chem 277:30048–30054

    Article  PubMed  CAS  Google Scholar 

  • Kihara A, Igarashi Y (2004) Cross talk between sphingolipids and glycerophospholipids in the establishment of plasma membrane asymmetry. Mol Biol Cell 15:4949–4959

    Article  PubMed  CAS  Google Scholar 

  • Klein M, Mamnun YM, Eggmann T, Schuller C, Wolfger H, Martinoia E, Kuchler K (2002) The ATP-binding cassette (ABC) transporter Bpt1p mediates vacuolar sequestration of glutathione conjugates in yeast. FEBS Lett 520:63–67

    Article  PubMed  CAS  Google Scholar 

  • Kolaczkowska A, Kolaczkowski M, Goffeau A, Moye-Rowley WS (2008) Compensatory activation of the multidrug transporters Pdr5p, Snq2p, and Yor1p by Pdr1p in Saccharomyces cerevisiae. FEBS Lett 582:977–983

    Article  PubMed  CAS  Google Scholar 

  • Kolaczkowski M, Kolaczowska A, Luczynski J, Witek S, Goffeau A (1998) In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb Drug Resist 4:143–158

    Article  PubMed  CAS  Google Scholar 

  • Kolaczkowski M, Kolaczkowska A, Gaigg B, Schneiter R, Moye-Rowley WS (2004) Differential regulation of ceramide synthase components LAC1 and LAG1 in Saccharomyces cerevisiae. Eukaryot Cell 3:880–892

    Article  PubMed  CAS  Google Scholar 

  • Kolaczkowski M, van der Rest M, Cybularz-Kolaczkowska A, Soumillion JP, Konings WN, Goffeau A (1996) Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p. J Biol Chem 271:31543–31548

    Article  PubMed  CAS  Google Scholar 

  • Kontoyiannis DP (2000) Efflux-mediated resistance to fluconazole could be modulated by sterol homeostasis in Saccharomyces cerevisiae. J Antimicrob Chemother 46:199–203

    Article  PubMed  CAS  Google Scholar 

  • Kren A, Mamnun YM, Bauer BE et al (2003) War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol 23:1775–1785

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy S, Gupta V, Snehlata P, Prasad R (1998a) Characterisation of human steroid hormone transport mediated by Cdr1p, a multidrug transporter of Candida albicans, belonging to the ATP binding cassette super family. FEMS Microbiol Lett 158:69–74

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy S, Gupta V, Prasad R, Panwar SL (1998b) Expression of CDR1, a multidrug resistance gene of Candida albicans: transcriptional activation by heat shock, drugs and human steroid hormones. FEMS Microbiol Lett 160:191–197

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy S, Chatterjee U, Gupta V, Prasad R, Das P, Snehlata P, Hasnain SE (1998c) Deletion of transmembrane domain 12 of CDR1, a multidrug transporter from Candida albicans, leads to altered drug specificity: expression of a yeast multidrug transporter in baculovirus expression system. Yeast 14:535–550

    Article  PubMed  CAS  Google Scholar 

  • Kuchler K, Thorner J (1992) Secretion of peptides and proteins lacking hydrophobic signal sequences: the role of adenosine triphosphate-driven membrane translocators. Endocr Rev 13:499–514

    PubMed  CAS  Google Scholar 

  • Lamping E, Ranchod A, Nakamura K et al (2009) Abc1p is a multidrug efflux transporter that tips the balance in favor of innate azole resistance in Candida krusei. Antimicrob Agents Chemother 53:354–369

    Article  PubMed  CAS  Google Scholar 

  • Lamping E, Monk BC, Niimi K et al (2007) Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. Eukaryot Cell 6:1150–1165

    Article  PubMed  CAS  Google Scholar 

  • Lewis K (1994) Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem Sci 19:119–123

    Article  PubMed  CAS  Google Scholar 

  • Liu TT, Znaidi S, Barker KS et al (2007) Genome-wide expression, location analyses of the Candida albicans Tac1p regulon. Eukaryot Cell 6:2122–2138

    Article  PubMed  CAS  Google Scholar 

  • Mahe Y, Lemoine Y, Kuchler K (1996) The ATP binding cassette transporters Pdr5 and Snq2 of Saccharomyces cerevisiae can mediate transport of steroids in vivo. J Biol Chem 271:25167–25172

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Xu R, Bielawska A, Obeid LM (2000) Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity. J Biol Chem 275:6876–6884

    Article  PubMed  CAS  Google Scholar 

  • Miyahara K, Mizunuma M, Hirata D, Tsuchiya E, Miyakawa T (1996) The involvement of the Saccharomyces cerevisiae multidrug resistance transporters Pdr5p and Snq2p in cation resistance. FEBS Lett 399:317–320

    Article  PubMed  CAS  Google Scholar 

  • Monk BC, Niimi K, Lin S et al (2005) Surface-active fungicidal D-peptide inhibitors of the plasma membrane proton pump that block azole resistance. Antimicrob Agents Chemother 49:57–70

    Article  PubMed  CAS  Google Scholar 

  • Moran GP, Sanglard D, Donnelly SM, Shanley DB, Sullivan DJ, Coleman DC (1998) Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis. Antimicrob Agents Chemother 42:1819–1830

    PubMed  CAS  Google Scholar 

  • Morschhäuser J (2009) Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol. doi: 10.1016/ j.fgb.2009.1008.1002

    PubMed  Google Scholar 

  • Mukhopadhyay K, Kohli A, Prasad R (2002) Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother 46:3695–3705

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay K, Prasad T, Saini P, Pucadyil TJ, Chattopadhyay A, Prasad R (2004) Membrane sphingolipid–ergosterol interactions are important determinants of multidrug resistance in Candida albicans. Antimicrob Agents Chemother 48:1778–1787

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Niimi M, Niimi K et al (2001) Functional expression of Candida albicans drug efflux pump Cdr1p in a Saccharomyces cerevisiae strain deficient in membrane transporters. Antimicrob Agents Chemother 45:3366–3374

    Article  PubMed  CAS  Google Scholar 

  • Nascimento AM, Goldman GH, Park S et al (2003) Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole. Antimicrob Agents Chemother 47:1719–1726

    Article  PubMed  CAS  Google Scholar 

  • Nichols JW (2002) Internalization and trafficking of fluorescent-labeled phospholipids in yeast. Semin Cell Dev Biol 13:179–184

    Article  PubMed  CAS  Google Scholar 

  • Niimi M, Niimi K, Takano Y, Holmes AR, Fischer FJ, Uehara Y, Cannon RD (2004) Regulated overexpression of CDR1 in Candida albicans confers multidrug resistance. J Antimicrob Chemother 54:999–1006

    Article  PubMed  CAS  Google Scholar 

  • Nourani A, Wesolowski-Louvel M, Delaveau T, Jacq C, Delahodde A (1997) Multiple-drug-resistance phenomenon in the yeast Saccharomyces cerevisiae: involvement of two hexose transporters. Mol Cell Biol 17:5453–5460

    PubMed  CAS  Google Scholar 

  • Orozco AS, Higginbotham LM, Hitchcock CA et al (1998) Mechanism of fluconazole resistance in Candida krusei. Antimicrob Agents Chemother 42:2645–2649

    PubMed  CAS  Google Scholar 

  • Panwar SL, Moye-Rowley WS (2006) Long chain base tolerance in Saccharomyces cerevisiae is induced by retrograde signals from the mitochondria. J Biol Chem 281:6376–6384

    Article  PubMed  CAS  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    PubMed  CAS  Google Scholar 

  • Pasrija R, Banerjee D, Prasad R (2007) Structure and function analysis of CaMdr1p, a major facilitator superfamily antifungal efflux transporter protein of Candida albicans: identification of amino acid residues critical for drug/H+ transport. Eukaryot Cell 6:443–453

    Article  PubMed  CAS  Google Scholar 

  • Pasrija R, Panwar SL, Prasad R (2008) Multidrug transporters CaCdr1p and CaMdr1p of Candida albicans display different lipid specificities: both ergosterol and sphingolipids are essential for targeting of CaCdr1p to membrane rafts. Antimicrob Agents Chemother 52:694–704

    Article  PubMed  CAS  Google Scholar 

  • Pfaller MA, Diekema DJ, Jones RN, Sader HS, Fluit AC, Hollis RJ, Messer SA (2001) International surveillance of bloodstream infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J Clin Microbiol 39:3254–3259

    Article  PubMed  CAS  Google Scholar 

  • Pinjon E, Moran GP, Jackson CJ, Kelly SL, Sanglard D, Coleman DC, Sullivan DJ (2003) Molecular mechanisms of itraconazole resistance in Candida dubliniensis. Antimicrob Agents Chemother 47:2424–2437

    Article  PubMed  CAS  Google Scholar 

  • Piper P, Mahe Y, Thompson S et al (1998) The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17:4257–4265

    Article  PubMed  CAS  Google Scholar 

  • Pohl A, Devaux PF, Herrmann A (2005) Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochim Biophys Acta 1733:29–52

    Article  PubMed  CAS  Google Scholar 

  • Posteraro B, Sanguinetti M, Sanglard D et al (2003) Identification and characterization of a Cryptococcus neoformans ATP binding cassette (ABC) transporter-encoding gene, CnAFR1, involved in the resistance to fluconazole. Mol Microbiol 47:357–371

    Article  PubMed  CAS  Google Scholar 

  • Prasad R, Murthy SK, Gupta V (1995a) Multiple drug resistance in Candida albicans. Acta Biochim Pol 42:497–504

    PubMed  CAS  Google Scholar 

  • Prasad R, De Wergifosse P, Goffeau A, Balzi E (1995b) Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27:320–329

    Article  PubMed  CAS  Google Scholar 

  • Prasad R, Gaur NA, Gaur M, Komath SS (2006) Efflux pumps in drug resistance of Candida. Infect Disord Drug Targets 6:69–83

    Article  PubMed  CAS  Google Scholar 

  • Rebbeor JF, Connolly GC, Dumont ME, Ballatori N (1998) ATP-dependent transport of reduced glutathione on YCF1, the yeast orthologue of mammalian multidrug resistance associated proteins. J Biol Chem 273:33449–33454

    Article  PubMed  CAS  Google Scholar 

  • Rogers PD, Barker KS (2003) Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 47:1220–1227

    Article  PubMed  CAS  Google Scholar 

  • Sa-Correia I, Tenreiro S (2002) The multidrug resistance transporters of the major facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome sequence. J Biotechnol 98:215–226

    Article  PubMed  CAS  Google Scholar 

  • Saidane S, Weber S, De Deken X, St-Germain G, Raymond M (2006) PDR16-mediated azole resistance in Candida albicans. Mol Microbiol 60:1546–1562

    Article  PubMed  CAS  Google Scholar 

  • Sanglard D, Ischer F, Bille J (2001) Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother 45:1174–1183

    Article  PubMed  CAS  Google Scholar 

  • Sanglard D, Ischer F, Monod M, Bille J (1996) Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 40:2300–2305

    PubMed  CAS  Google Scholar 

  • Sanglard D, Ischer F, Monod M, Bille J (1997) Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143:405–416

    Article  PubMed  CAS  Google Scholar 

  • Sanglard D, Ischer F, Calabrese D, Micheli M, Bille J (1998) Multiple resistance mechanisms to azole antifungals in yeast clinical isolates. Drug Resist Updat 1:255–265

    Article  PubMed  CAS  Google Scholar 

  • Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J (1999) The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 43:2753–2765

    PubMed  CAS  Google Scholar 

  • Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J (1995) Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 39:2378–2386

    Article  PubMed  CAS  Google Scholar 

  • Schuetzer-Muehlbauer M, Willinger B, Krapf G, Enzinger S, Presterl E, Kuchler K (2003) The Candida albicans Cdr2p ATP-binding cassette (ABC) transporter confers resistance to caspofungin. Mol Microbiol 48:225–235

    Article  PubMed  CAS  Google Scholar 

  • Schuller C, Mamnun YM, Wolfger H, Rockwell N, Thorner J, Kuchler K (2007) Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in Saccharomyces cerevisiae. Mol Biol Cell 18:4932–4944

    Article  PubMed  CAS  Google Scholar 

  • Schüller C, Bauer BE, Kuchler K (2003) Inventory and evolution of fungal ABC protein genes. In: Holland IB, Cole SP, Kuchler K, Higgins CF (eds) ABC proteins: from Bacteria to Man. Academic, Amsterdam, pp 279–293

    Chapter  Google Scholar 

  • Servos J, Haase E, Brendel M (1993) Gene SNQ2 of Saccharomyces cerevisiae, which confers resistance to 4-nitroquinoline-N-oxide and other chemicals, encodes a 169 kDa protein homologous to ATP-dependent permeases. Mol Gen Genet 236:214–218

    Article  PubMed  CAS  Google Scholar 

  • Shahi P, Moye-Rowley WS (2009) Coordinate control of lipid composition and drug transport activities is required for normal multidrug resistance in fungi. Biochim Biophys Acta 1794:852–859

    Article  PubMed  CAS  Google Scholar 

  • Sharma KG, Mason DL, Liu G, Rea PA, Bachhawat AK, Michaelis S (2002) Localization, regulation, and substrate transport properties of Bpt1p, a Saccharomyces cerevisiae MRP-type ABC transporter. Eukaryot Cell 1:391–400

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295

    Article  PubMed  CAS  Google Scholar 

  • Sipos G, Kuchler K (2006) Fungal ATP-binding cassette (ABC) transporters in drug resistance and detoxification. Curr Drug Targets 7:471–481

    Article  PubMed  CAS  Google Scholar 

  • Skrzypek MS, Nagiec MM, Lester RL, Dickson RC (1998) Inhibition of amino acid transport by sphingoid long chain bases in Saccharomyces cerevisiae. J Biol Chem 273:2829–2834

    Article  PubMed  CAS  Google Scholar 

  • Slaven JW, Anderson MJ, Sanglard D, Dixon GK, Bille J, Roberts IA, Denning DW (1999) Induced expression of a novel Aspergillus fumigatus putative drug efflux gene in response to itraconazole. Fungal Genet Newsl 46:64

    Google Scholar 

  • Smriti KSS, Prasad R (1999) Membrane fluidity affects functions of Cdr1p, a multidrug ABC transporter of Candida albicans. FEMS Microbiol Lett 173:475–481

    Article  PubMed  CAS  Google Scholar 

  • Smriti KS, Dixit BL, Gupta CM, Milewski S, Prasad R (2002) ABC transporters Cdr1p, Cdr2p and Cdr3p of a human pathogen Candida albicans are general phospholipid translocators. Yeast 19:303–318

    Article  PubMed  CAS  Google Scholar 

  • Thakur JK, Arthanari H, Yang F et al (2008) A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature 452:604–609

    Article  PubMed  CAS  Google Scholar 

  • Tobin MB, Peery RB, Skatrud PL (1997) Genes encoding multiple drug resistance-like proteins in Aspergillus fumigatus and Aspergillus flavus. Gene 200:11–23

    Article  PubMed  CAS  Google Scholar 

  • Torelli R, Posteraro B, Ferrari S, La Sorda M, Fadda G, Sanglard D, Sanguinetti M (2008) The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata. Mol Microbiol 68:186–201

    Article  PubMed  CAS  Google Scholar 

  • Toti F, Schindler V, Riou JF et al (1997) Another link between phospholipid transmembrane migration and ABC transporter gene family, inferred from a rare inherited disorder of phosphatidylserine externalization. Biochem Biophys Res Commun 241:548–552

    Article  PubMed  CAS  Google Scholar 

  • Tsai HF, Krol AA, Sarti KE, Bennett JE (2006) Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob Agents Chemother 50:1384–1392

    Article  PubMed  CAS  Google Scholar 

  • Tsujimura S, Saito K, Nawata M, Nakayamada S, Tanaka Y (2008) Overcoming drug resistance induced by P-glycoprotein on lymphocytes in patients with refractory rheumatoid arthritis. Ann Rheum Dis 67:380–388

    Article  PubMed  CAS  Google Scholar 

  • Tutulan-Cunita AC, Mikoshi M, Mizunuma M, Hirata D, Miyakawa T (2005) Mutational analysis of the yeast multidrug resistance ABC transporter Pdr5p with altered drug specificity. Genes Cells 10:409–420

    Article  PubMed  CAS  Google Scholar 

  • Uppuluri P, Nett J, Heitman J, Andes D (2008) Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother 52:1127–1132

    Article  PubMed  CAS  Google Scholar 

  • van den Hazel HB, Pichler H, do Valle Matta MA, Leitner E, Goffeau A, Daum G (1999) PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs. J Biol Chem 274:1934–1941

    Article  PubMed  Google Scholar 

  • Vanden Bossche H, Marichal P, Odds FC (1994) Molecular mechanisms of drug resistance in fungi. Trends Microbiol 2:393–400

    Article  PubMed  CAS  Google Scholar 

  • Vermitsky JP, Edlind TD (2004) Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob Agents Chemother 48:3773–3781

    Article  PubMed  CAS  Google Scholar 

  • Vermitsky JP, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD (2006) Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol Microbiol 61:704–722

    Article  PubMed  CAS  Google Scholar 

  • Wada S, Niimi M, Niimi K, Holmes AR, Monk BC, Cannon RD, Uehara Y (2002) Candida glabrata ATP-binding cassette transporters Cdr1p and Pdh1p expressed in a Saccharomyces cerevisiae strain deficient in membrane transporters show phosphorylation-dependent pumping properties. J Biol Chem 277:46809–46821

    Article  PubMed  CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1: 945–951

    Google Scholar 

  • Wemmie JA, Moye-Rowley WS (1997) Mutational analysis of the Saccharomyces cerevisiae ATP-binding cassette transporter protein Ycf1p. Mol Microbiol 25:683–694

    Article  PubMed  CAS  Google Scholar 

  • Wemmie JA, Szczypka MS, Thiele DJ, Moye-Rowley WS (1994) Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J Biol Chem 269:32592–32597

    PubMed  CAS  Google Scholar 

  • White TC (1997) Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 41:1482–1487

    PubMed  CAS  Google Scholar 

  • White TC, Holleman S, Dy F, Mirels LF, Stevens DA (2002) Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother 46:1704–1713

    Article  PubMed  CAS  Google Scholar 

  • Wirsching S, Moran GP, Sullivan DJ, Coleman DC, Morschhauser J (2001) MDR1-mediated drug resistance in Candida dubliniensis. Antimicrob Agents Chemother 45:3416–3421

    Article  PubMed  CAS  Google Scholar 

  • Wolfger H, Mamnun YM, Kuchler K (2001) Fungal ABC proteins: pleiotropic drug resistance, stress response and cellular detoxification. Res Microbiol 152:375–389

    Article  PubMed  CAS  Google Scholar 

  • Wolfger H, Mamnun YM, Kuchler K (2004) The yeast Pdr15p ATP-binding cassette (ABC) protein is a general stress response factor implicated in cellular detoxification. J Biol Chem 279:11593–11599

    Article  PubMed  CAS  Google Scholar 

  • Wolfger H, Mahe Y, Parle-McDermott A, Delahodde A, Kuchler K (1997) The yeast ATP binding cassette (ABC) protein genes PDR10 and PDR15 are novel targets for the Pdr1 and Pdr3 transcriptional regulators. FEBS Lett 418:269–274

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Zhang LX, Zhang JD et al (2006) cDNA microarray analysis of differential gene expression and regulation in clinically drug-resistant isolates of Candida albicans from bone marrow transplanted patients. Int J Med Microbiol 296:421–434

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Collins KI, Greenberger LM (1995) Functional evidence that transmembrane 12 and the loop between transmembrane 11 and 12 form part of the drug-binding domain in P-glycoprotein encoded by MDR1. J Biol Chem 270:5441–5448

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ganesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharma, S., Ganesan, K. (2010). Multidrug Resistance in Fungi: The Role of Pleiotropic Drug Resistance Genes. In: Ahmad, I., Owais, M., Shahid, M., Aqil, F. (eds) Combating Fungal Infections. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12173-9_8

Download citation

Publish with us

Policies and ethics