Skip to main content

Innate Immunity in Pathogenesis and Treatment of Dermatomycosis

  • Chapter
  • First Online:
Combating Fungal Infections

Abstract

Innate and cell-mediated immunity are considered as the principal defense lines against fungal infections in humans. Most opportunistic mycoses occur in individuals with defective innate and/or adaptive cellular immunity. Skin and nail infections caused by dermatophyte fungi have become more common in recent years. The capacity of the skin (mainly stratum corneum) to resist infection depends on the innate, cutaneous production of molecules known as antimicrobial peptides (AMPs), and expression of some AMPs further increases in response to microbial invasion. Emerging evidence suggests that some of these peptides are important to immune defense by acting not only as natural antibiotics but also as cell-signaling molecules. Cathelicidins are unique AMPs that protect the skin. Therapies targeting control of cathelicidin and other AMPs might provide new approaches in the management of infectious skin diseases. A better understanding of reciprocal regulation between innate, humoral, and adaptive immune responses in the development of an optimal antifungal immunity may lead to a clarification of the mechanisms involved in host immunity to fungal infections. In this chapter, we review some of the dermatomycosis diseases, their casual agents, the role of innate immunity in pathogenesis, and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abiko Y, Jinbu Y, Noguchi T et al. (2002) Upregulation of human beta-defensin 2 peptide expression in oral lichen planus, leukoplakia and candidiasis, an immunohistochemical study. Pathol Res Pract 198:537–542

    PubMed  CAS  Google Scholar 

  • Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jornvall H, Wigzell H, Gudmundsson GH (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96:3086

    PubMed  CAS  Google Scholar 

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    PubMed  CAS  Google Scholar 

  • Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    PubMed  CAS  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    PubMed  CAS  Google Scholar 

  • Aljabre SH, Richardson MD, Scott EM, Shankland GS (1992) Germination of Trichophyton mentagrophytes on human stratum corneum in vitro. J Med Vet Mycol 30:145–152

    PubMed  CAS  Google Scholar 

  • Aljabre SH, Richardson MD, Scott EM, Rashid A, Shankland GS (1993) Adherence of arthroconidia and germlings of anthropophilic and zoophilic varieties of Trichophyton mentagrophytes to human corneocytes as an early event in the pathogenesis of dermatophytosis. Clin Exp Dermatol 18:231–235

    PubMed  CAS  Google Scholar 

  • Bals R, Wang X, Zasloff M, Wilson JM (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A 95:9541

    PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    PubMed  CAS  Google Scholar 

  • Baroni A, Orlando M, Donnarumma G et al. (2006) Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Arch Dermatol Res 297:280–288

    PubMed  CAS  Google Scholar 

  • Bauman SK, Nichols KL, Murphy JW (2000) Dendritic cells in the induction of protective and nonprotective anticryptococcal cell-mediated immune responses. J Immunol 165:158–167

    PubMed  CAS  Google Scholar 

  • Bellocchio S, Montagnoli C, Bozza S, Gaziano R, Rossi G, Mambula SS, Vecchi A, Mantovani A, Levitz SM, Romani L (2004) The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 172:3059–3069

    PubMed  CAS  Google Scholar 

  • Blake JS, Cabrera RC, Dahl MV, Herron MJ, Nelson RD (1991a) Comparison of the immunoinhibitory properties of cell wall mannan glycoproteins from Trichophyton rubrum and Microsporum canis. J Invest Dermatol 96:601

    Google Scholar 

  • Blake JS, Dahl MV, Herron MJ, Nelson RD (1991b) An immunoinhibitory cell wall glycoprotein (mannan) from Trichophyton rubrum. J Invest Dermatol 96:657–661

    PubMed  CAS  Google Scholar 

  • Borelli D (1965) Microsporum racemosum nova species. Acta Med Venez 12:148–151

    Google Scholar 

  • Bowdish DM, Davidson DJ, Hancock RE (2006) Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 306:27–66

    PubMed  CAS  Google Scholar 

  • Braedel S, Radsak M, Einsele H, Latge JP, Michan A, Loeffler J, Haddad Z, Grigoleit U, Schild H, Hebart H (2004) Aspergillus fumigatus antigens activate innate immune cells via toll-like receptors 2 and 4. Br J Haematol 125:392–399

    PubMed  CAS  Google Scholar 

  • Braff MH, Bardan A, Nizet V, Gallo RL (2005) Cutaneous defense mechanisms by antimicrobial peptides. J Invest Dermatol 125:9–13

    PubMed  CAS  Google Scholar 

  • Brouta F, Descamps F, Monod M, Vermout S, Losson B, Mignon B (2002) Secreted metalloprotease gene family of Microsporum canis. Infect Immun 70:5676–5683

    PubMed  CAS  Google Scholar 

  • Campos MR, Russo M, Gomes E, Almeida SR (2006) Stimulation, inhibition and death of macrophages infected with Trichophyton rubrum. Microbes Infect 8:372–379

    PubMed  CAS  Google Scholar 

  • Dahl MV (1993) Suppression of immunity and inflammation by products produced by dermatophytes. J Am Acad Dermatol 28:S19–S23

    PubMed  CAS  Google Scholar 

  • De Bernardis F, Liu H, O’Mahony R, La Valle R, Bartollino S, Sandini S, Grant S, Brewis N, Tomlinson I, Basset RC, Holton J, Roitt IM, Cassone A (2007) Human domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis. J Infect Dis 195(149):57

    Google Scholar 

  • Degreef H (2008) Clinical forms of dermatophytosis (ringworm infection). Mycopathologia 166:257–265

    PubMed  Google Scholar 

  • Dei Cas E, Vernes A (1986) Parasitic adaptation of pathogenic fungi to mammalian hosts. Crit Rev Microbiol 13:173–218

    PubMed  CAS  Google Scholar 

  • Descamps F, Brouta F, Monod M, Zaugg C, Baar D, Losson B, Mignon B (2002) Isolation of a Microsporum canis gene family encoding three subtilisin-like proteases expressed in vivo. J Invest Dermatol 119:830–835

    PubMed  CAS  Google Scholar 

  • Diamond RD, Krzesicki R, Epstein B, Jao W (1978) Damage to hyphal forms of fungi by human leukocytes in vitro. A possible host defense mechanism in aspergillosis and mucormycosis. Am J Pathol 91:313–328

    PubMed  CAS  Google Scholar 

  • Diamond RD, Clark RA, Haudenschild CC (1980) Damage to Candida albicans hyphae and pseudohyphae by the myeloperoxidase system and oxidative products of neutrophil metabolism in vitro. J Clin Invest 66:908–917

    PubMed  CAS  Google Scholar 

  • Donnarumma G, Paoletti I, Buommino E et al. (2004) Malassezia furfur induces the expression of b-defensins-2 in human keratinocytes in a protein kinase C-dependent manner. Arch Dermatol Res 295:474–481

    PubMed  CAS  Google Scholar 

  • Droschner RA, Lopez-Garcia B, Massie J et al (2004) Innate immune defense of the nail unit by antimicrobial peptides. J Am Acad Dermatol 50:343–348

    Google Scholar 

  • Duek L, Kaufman G, Ulman Y, Berdicevsky I (2004) The pathogenesis of dermatophyte infections in human skin sections. J Infect 48:175–180

    PubMed  CAS  Google Scholar 

  • Esquenazi D, Alviano CS, de Souza W, Rozental S (2004) The influence of surface carbohydrates during in vitro infection of mammalian cells by the dermatophyte Trichophyton rubrum. Res Microbiol 155:144–153

    PubMed  CAS  Google Scholar 

  • Faergemann J (1989) A new model for growth and filament production of Pityrosporum ovale (orbiculare) on human stratum corneum in vitro. J Invest Dermatol 92:117–119

    PubMed  CAS  Google Scholar 

  • Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272:50–53

    PubMed  CAS  Google Scholar 

  • Ferreira-Nozawa MS, Silveira HC, Ono CJ, Fachin AL, Rossi A, Martinez-Rossi NM (2006) The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Med Mycol 44:641–645

    PubMed  CAS  Google Scholar 

  • Froeliger EH, Carpenter BE (1996) NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet 251:647–656

    PubMed  CAS  Google Scholar 

  • Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, Gudmundsson GH (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272:15258–15263

    PubMed  CAS  Google Scholar 

  • Frohm NM, Sandstedt B, Sørensen O, Weber G, Borregaard N, Stahle-Backdahl M (1999) The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 67:2561

    Google Scholar 

  • Fuentes CA (1956) A new species of Microsporum. Mycologia 48:613–614

    Google Scholar 

  • Fuller LC, Child FC, Midgley G, Higgins EM (2003) Scalp ringworm in south-east London and an analysis of a cohort of patients from a paediatric dermatology department. Br J Dermatol 148:985–988

    PubMed  CAS  Google Scholar 

  • Gallo RL, Huttner KM (1998) Antimicrobial peptides: an emerging concept in cutaneous biology. J Invest Dermatol 111:739–743

    PubMed  CAS  Google Scholar 

  • Gallo RL, Ono M, Povsic T et al. (1994) Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci U S A 91:11035–11039

    PubMed  CAS  Google Scholar 

  • Georg LK, Ajello L, Friedman L, Brinkman SA (1962) A new species of Microsporum pathogenic to man and animals. Sabouraudia 1:189–196

    PubMed  CAS  Google Scholar 

  • Ghannoum M, Isham N, Hajjeh R, Cano M, Al-Hawasi F, Yearick D, Warner J, Long L, Jessup C, Elewski B (2003) Tinea capitis in Cleveland: survey of elementary school students. J Am Acad Dermatol 48:189–193

    PubMed  CAS  Google Scholar 

  • Giddey K, Monod M, Barblan J, Potts A, Waridel P, Zaugg C, Quadroni M (2007) Comprehensive analysis of proteins secreted by Trichophyton rubrum and Trichophyton violaceum under in vitro conditions. J Proteome Res 6:3081–3092

    PubMed  CAS  Google Scholar 

  • Grando SA, Herron MJ, Dahl MV, Nelson RD (1992a) Binding and uptake of Trichophyton rubrum mannan by human epidermal keratinocytes: a time-course study. Acta Derm Venereol 72:273–276

    PubMed  CAS  Google Scholar 

  • Grando SA, Hostager BS, Herron MJ, Dahl MV, Nelson RD (1992b) Binding of Trichophyton rubrum mannan to human monocytes in vitro. J Invest Dermatol 98:876–880

    PubMed  CAS  Google Scholar 

  • Gropp R, Frye M, Wagner TO, Bargon J (1999) Epithelial defensins impair adenoviral infection: implication for adenovirus-mediated gene therapy. Hum Gene Ther 10:957–964

    PubMed  CAS  Google Scholar 

  • Gupta AK, Summerbell RC (1998) Increased incidence of Trichophyton tonsurans tinea capitis in Ontario, Canada between 1985 and 1996. Med Mycol 36:55–60

    PubMed  CAS  Google Scholar 

  • Gupta AK, Einarson TR, Summerbell RC, Shear NH (1998) An overview of topical antifungal therapy in dermatomycoses. A North American perspective. Drugs 55:645–674

    PubMed  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (1997) A peptide antibiotic from human skin. Nature 387:861

    PubMed  CAS  Google Scholar 

  • Harder J, Meyer-Hoffert U, Wehkamp K et al. (2004) Differential gene induction of human b-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J Invest Dermatol 123:522–529

    PubMed  CAS  Google Scholar 

  • Hay RJ, Robles W, Midgley G, Moore MK, European Confederation of Medical Mycology Working Party on Tinea Capitis (2001) Tinea capitis in Europe: new perspective on an old problem. J Eur Acad Dermatol Venereol 15:229–233

    PubMed  CAS  Google Scholar 

  • Hayashi F, Means TK, Luster AD (2003) Toll-like receptors stimulate human neutrophil function. Blood 102:2660–2669

    PubMed  CAS  Google Scholar 

  • Hellgren L, Vincent J (1981) Lipolytic activity of some dermatophytes. II. Isolation and characterisation of the lipase of Epidermophyton floccosum. J Med Microbiol 14:347–350

    PubMed  CAS  Google Scholar 

  • Hensel M, Arst HN Jr, Aufauvre-Brown A, Holden DW (1998) The role of the Aspergillus fumigatus areA gene in invasive pulmonary aspergillosis. Mol Gen Genet 258:553–557

    PubMed  CAS  Google Scholar 

  • Hiemstra PS, Van Wetering S, Stolk J (1998) Neutrophil serine proteinases and defensins in chronic obstructive pulmonary disease: effects on pulmonary epithelium. Eur Respir J 12:1200

    PubMed  CAS  Google Scholar 

  • Hornef MW, Bogdan C (2005) The role of epithelial Toll-like receptor expression in host defense and microbial tolerance. J Endotoxin Res 11:124–128

    PubMed  CAS  Google Scholar 

  • Howell MD, Gallo RL, Boguniewicz M, Jones JF, Wong C, Streib JE et al (2006) Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity 24:341–348

    PubMed  CAS  Google Scholar 

  • Huang Q, Liu D, Majewski P, Schulte LC, Korn JM, Young RA, Lander ES, Hacohen N (2001) The plasticity of dendritic cell responses to pathogens and their components. Science 294:870–875

    PubMed  CAS  Google Scholar 

  • Hubert P, Herman L, Maillard C et al. (2007) Defensins induce the recruitment of dendritic cells in cervical human papillomavirus-associated (pre)neoplastic lesions formed in vitro and transplanted in vivo. FASEB J 21:2765–2775

    PubMed  CAS  Google Scholar 

  • Ikuta K, Shibata N, Blake JS, Dahl MV, Nelson RD, Hisamichi K, Kobayashi H, Suzuki S, Okawa Y (1997) NMR study of the galactomannans of Trichophyton mentagrophytes and Trichophyton rubrum. Biochem J 323:297–305

    PubMed  CAS  Google Scholar 

  • Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    PubMed  CAS  Google Scholar 

  • Izadpanah A, Gallo RL (2005) Antimicrobial peptides. J Am Acad Dermatol 52:381–390

    PubMed  Google Scholar 

  • Jackson SM, Elias PM (1993) Skin as an organ of protection. In: Fitzpatrick TB, Eisen AZ, Wolff K, Freedberg IM, Austen KF (eds) Dermatology in general medicine, 4th edn. McGraw-Hill, New York, pp 241–253

    Google Scholar 

  • Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    PubMed  CAS  Google Scholar 

  • Jensen JM, Pfeiffer S, Akaki T et al. (2007) Barrier function, epidermal differentiation, and human beta-defensin 2 expression in tinea corporis. J Invest Dermatol 127:1720–1727

    PubMed  CAS  Google Scholar 

  • Jousson O, Lechenne B, Bontems O, Capoccia S, Mignon B, Barblan J, Quadroni M, Monod M (2004a) Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum. Microbiology 150:301–310

    PubMed  CAS  Google Scholar 

  • Jousson O, Lechenne B, Bontems O, Mignon B, Reichard U, Barblan J, Quadroni M, Monod M (2004b) Secreted subtilisin gene family in Trichophyton rubrum. Gene 339:79–88

    PubMed  CAS  Google Scholar 

  • Kan VL, Bennett JE (1988) Lectin-like attachment sites on murine pulmonary alveolar macrophages bind Aspergillus fumigatus conidia. J Infect Dis 158:407–414

    PubMed  CAS  Google Scholar 

  • Kanzler H, Barrat FJ, Hessel EM, Coffman RL (2007) Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 13:552–559

    PubMed  CAS  Google Scholar 

  • Kaufman G, Horwitz BA, Duek L, Ullman Y, Berdicevsky I (2007) Infection stages of the dermatophyte pathogen Trichophyton: microscopic characterization and proteolytic enzymes. Med Mycol 45:149–155

    PubMed  CAS  Google Scholar 

  • Kawai M, Yamazaki M, Tsuboi R et al. (2006) Human betadefensin-2, an antimicrobial peptide, was elevated in scales collected from tinea pedis patients. Int J Dermatol 45:1389–1390

    PubMed  Google Scholar 

  • King RD, Khan HA, Foye JC, Greenberg JH, Jones HE (1975) Transferrin, iron, and dermatophytes. I. Serum dermatophyte inhibitory component definitively identified as unsaturated transferrin. J Clin Med 86:204–212

    CAS  Google Scholar 

  • Knight AG (1972) Culture of dermatophytes upon stratum corneum. J Invest Dermatol 59:427–431

    PubMed  CAS  Google Scholar 

  • Knight AC (1973) Human models for in vivo and in vitro assessment of topical antifungal agents. Br J Dermatol 89:509–514

    PubMed  CAS  Google Scholar 

  • Kunert J (1992) Effect of reducing agents on proteolytic and keratinolytic activity of enzymes of Microsporum gypseum. Mycoses 35:343–348

    PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Bennett JE (1992) Medical mycology. Lea and Febiger, PA

    Google Scholar 

  • Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63:1291

    PubMed  CAS  Google Scholar 

  • Lechenne B, Reichard U, Zaugg C, Fratti M, Kunert J, Boulat O, Monod M (2007) Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiology 153:905–913

    PubMed  CAS  Google Scholar 

  • Lehrer RI, Lichtenstein AK, Ganz T (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11:105–128

    PubMed  CAS  Google Scholar 

  • Levitz SM (2004) Interactions of Toll-like receptors with fungi. Microbes Infect 6:1351–1355

    PubMed  CAS  Google Scholar 

  • Limjindaporn T, Khalaf RA, Fonzi WA (2003) Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1. Mol Microbiol 50:993–1004

    PubMed  CAS  Google Scholar 

  • MacCarthy KG, Blake JS, Johnson KL, Dahl MV, Kalish RS (1994) Human dermatophyte-responsive T-cell lines recognize cross-reactive antigens associated with mannose-rich glycoproteins. Exp Dermatol 3:66–71

    PubMed  CAS  Google Scholar 

  • Mambula SS, Simons ER, Hastey R, Selsted ME, Levitz SM (2000) Human neutrophil-mediated nonoxidative antifungal activity against Cryptococcus neoformans. Infect Immun 68:6257–6264

    PubMed  CAS  Google Scholar 

  • Mambula SS, Sau K, Henneke P, Golenbock DT, Levitz SM (2002) Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem 277:39320–39326

    PubMed  CAS  Google Scholar 

  • Marshak-Rothstein A (2006) Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6:823–835

    PubMed  CAS  Google Scholar 

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32

    PubMed  CAS  Google Scholar 

  • Mignon B, Swinnen M, Bouchara JP, Hofinger M, Nikkels A, Pierard G, Gerday C, Losson B (1998) Purification and characterization of a 31.5 kDa keratinolytic subtilisin-like serine protease from Microsporum canis and evidence of its secretion in naturally infected cats. Med Mycol 36:395–404

    PubMed  CAS  Google Scholar 

  • Monod M, Borg-von Zepelin M (2002) Secreted aspartic proteases as virulence factors of Candida species. Biol Chem 383:1087–1093

    PubMed  CAS  Google Scholar 

  • Monod M, Lechenne B, Jousson O, Grand D, Zaugg C, Stocklin R, Grouzmann E (2005) Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum. Microbiology 15:145–155

    Google Scholar 

  • Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H, Heumann D (2001) Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-α by blocking the binding of LPS to CD14+ cells. J Immunol 167:3329

    PubMed  CAS  Google Scholar 

  • Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454

    PubMed  CAS  Google Scholar 

  • Ollert MW, Sohnchen R, Korting HC, Ollert U, Brautigam S, Brautigam W (1993) Mechanisms of adherence of Candida albicans to cultured human epidermal keratinocytes. Infect Immun 61:4560–4568

    PubMed  CAS  Google Scholar 

  • Osborne CS, Leitner I, Favre B, Ryder NS (2004) Antifungal drug response in an in vitro model of dermatophyte nail infection. Med Mycol 42:159–163

    PubMed  CAS  Google Scholar 

  • Pellier AL, Lauge R, Veneault-Fourrey C, Langin T (2003) CLNR1, the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle. Mol Microbiol 48:639–655

    PubMed  CAS  Google Scholar 

  • Pernet I, Reymermier C, Guezennec A et al. (2005) An optimized method for intensive screening of molecules that stimulate b-defensins 2 or 3 (hBD2 or hBD3) expression in cultured normal human keratinocytes. Int J Cosmet Sci 27:161–170

    PubMed  CAS  Google Scholar 

  • Pierard GE, Quatresooz P, Arrese JE (2006) Spotlight on nail histomycology. Dermatol Clin 24:371–374

    PubMed  CAS  Google Scholar 

  • Pierard GE, Arrese JE, Quatresooz P, Pierard-Franchimont C (2007) Emerging antifungal agents for onychomycosis. Exp Opin Emerg Drugs 12:345–353

    CAS  Google Scholar 

  • Pierard GE, Pierard-Franchimont C, Vroome V et al. (2008) Established and emerging oral antifungals in dermatology. In: Walters HA, Roberts MS (eds) Dermatological and cosmeceutical development. Marcel Dekker, New York, pp 283–296

    Google Scholar 

  • Quatresooz P, Pierard-Franchimont C, Arrese JE, Pierard GE (2008) Clinicopathologic presentations of dermatomycoses in cancer patients. J Eur Acad Dermatol Venereol 22:407–417

    Google Scholar 

  • Rashid A, Scott E, Richardson MD (1995) Early events in the invasion of the human nail plate by Trichophyton mentagrophytes. Br J Dermatol 133:932–940

    PubMed  CAS  Google Scholar 

  • Rippon JW (1988) Medical mycology: the pathogenic fungi and the pathogenic actinomycetes, 3rd edn. W.B. Saunders, PA

    Google Scholar 

  • Roberts SO (1969) Pityriasis versicolor: a clinical and mycological investigation. Br J Dermatol 81:315–326

    PubMed  CAS  Google Scholar 

  • Roeder A, Kirschning CJ, Rupec RA et al. (2004) Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol 42:485–498

    PubMed  CAS  Google Scholar 

  • Roilides E, Tsaparidou S, Kadiltsoglou I, Sein T, Walsh TJ (1999) Interleukin-12 enhances antifungal activity of human mononuclear phagocytes against Aspergillus fumigatus: implications for a gamma interferon-independent pathway. Infect Immun 67:3047–3050

    PubMed  CAS  Google Scholar 

  • Romani L (2002) Immunology of invasive candidiasis. In: Calderone RA (ed) Candida and Candidiasis. ASM Press, Washington, DC, pp 223–241

    Google Scholar 

  • Romani L, Mencacci A, Tonnetti L, Spaccapelo R, Cenci E, Puccetti P, Wolf SF, Bistoni F (1994) IL-12 is both required and prognostic in vivo for T helper type 1 differentiation in murine candidiasis. J Immunol 153:5167–5175

    PubMed  CAS  Google Scholar 

  • Rurangirwa A, Pierard-Franchimont C, Pierard GE (1989) Culture of fungi on cyanoacrylate skin surface strippings — a quantitative bioassay for evaluating antifungal drugs. Clin Exp Dermatol 59:425–428

    Google Scholar 

  • Sansonetti PJ (2006) The innate signaling of dangers and the dangers of innate signaling. Nat Immunol 7:1237–1242

    PubMed  CAS  Google Scholar 

  • Sawaki K, Mizukawa N, Yamaai T, Fukunaga J, Sugahara T (2002) Immunohistochemical study on expression of alpha-defensin and beta-defensin-2 in human buccal epithelia with candidiasis. Oral Dis 8:37–41

    PubMed  CAS  Google Scholar 

  • Scazzocchio C (2000) The fungal GATA factors. Curr Opin Microbiol 3:126–131

    PubMed  CAS  Google Scholar 

  • Sørensen OE, Arnljots K, Cowland JB, Bainton DF, Borregaard N (1997) The human antibacterial cathelicidin, hCAP-18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils. Blood 90:2796

    PubMed  Google Scholar 

  • Sørensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, Borregaard N (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:3951

    PubMed  Google Scholar 

  • Stern RS (1999) The epidemiology of cutaneous disease. In: Freedberg IM, Fitzpatrick TB (eds) Fitzpatrick’s dermatology in general medicine, 5th edn. McGraw-Hill, New York, pp 7–12

    Google Scholar 

  • Stolzenberg ED, Anderson GM, Ackermann MR, Whitlock RH, Zasloff M (1997) Epithelial antibiotic induced in states of disease. Proc Natl Acad Sci U S A 94:8686–8690

    PubMed  CAS  Google Scholar 

  • Van Wetering S, Mannesse-Lazeroms SP, Van Sterkenburg MA, Daha MR, Dijkman JH, Hiemstra PS (1997) Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am J Physiol 272:L888

    PubMed  Google Scholar 

  • Viani FC, Dos Santos JI, Paula CR, Larson CE, Gambale W (2001) Production of extracellular enzymes by Microsporum canis and their role in its virulence. Med Mycol 39:463–468

    PubMed  CAS  Google Scholar 

  • Weitzman I, Summerbell RC (1995) The dermatophytes. Clin Microbiol Rev 8:240–259

    PubMed  CAS  Google Scholar 

  • Yamada T, Makimura K, Abe S (2006) Isolation, characterization, and disruption of dnr1, the areA/nit-2-like nitrogen regulatory gene of the zoophilic dermatophyte, Microsporum canis. Med Mycol 44:243–252

    PubMed  CAS  Google Scholar 

  • Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1

    PubMed  CAS  Google Scholar 

  • Zheng Y, Niyonsaba F, Ushio H et al. (2007) Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human a-defensins from neutrophils. Br J Dermatol 157:1124–1131

    PubMed  CAS  Google Scholar 

  • Zurita J, Hay RJ (1987) Adherence of dermatophyte microconidia and arthroconidia to human keratinocytes in vitro. J Invest Dermatol 89:529–534

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Owais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Owais, M., Ansari, M.A., Ahmad, I., Zia, Q., Pierard, G., Chauhan, A. (2010). Innate Immunity in Pathogenesis and Treatment of Dermatomycosis. In: Ahmad, I., Owais, M., Shahid, M., Aqil, F. (eds) Combating Fungal Infections. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12173-9_15

Download citation

Publish with us

Policies and ethics