Skip to main content

Metabolic Pathways as Drug Targets: Targeting the Sulphur Assimilatory Pathways of Yeast and Fungi for Novel Drug Discovery

  • Chapter
  • First Online:

Abstract

The incidence of fungal infections is increasing worldwide, and the management and treatment of fungal infections has become increasingly important. The antifungals which are currently available target only a few pathways, and their persistent use has resulted not only in increased drug resistance but also in the emergence of newer fungal pathogens with intrinsic resistance. There is thus an urgent need for novel antifungals. Among the metabolic pathways, the sulphur assimilatory pathways of the pathogenic yeasts and fungi appear to be suitable for antifungal development, due to the essential requirement of sulphur to the organism and the significant differences from the corresponding pathways in humans. In this chapter, we present the current understanding of the sulphur assimilatory pathways in different pathogenic yeast and fungi, and discuss several targets that are currently being investigated or have the potential for antifungal development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andrade RV, Paes HC, Nicola AM, de Carvalho MJ, Fachin AL, Cardoso RS, Silva SS, Fernandes L, Silva SP, Donadi EA, Sakamoto-Hojo ET, Passos GA, Soares CM, Brigido MM, Felipe MS (2006) Cell organisation, sulphur metabolism and ion transport-related genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells. BMC Genomics 7:208

    Article  PubMed  Google Scholar 

  • Aoki Y, Yamamoto M, Hosseini-Mazinani SM, Koshikawa N, Sugimoto K, Arisawa M (1996) Antifungal azoxybacilin exhibits activity by inhibiting gene expression of sulfite reductase. Antimicrob Agents Chemother 40:127–132

    PubMed  CAS  Google Scholar 

  • Avram D, Bakalinsky AT (1997) SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae. J Bacteriol 179:5971–5974

    PubMed  CAS  Google Scholar 

  • Bastos KP, Bailao AM, Borges CL, Faria FP, Felipe MS, Silva MG, Martins WS, Fiuza RB, Pereira M, Soares CM (2007) The transcriptome analysis of early morphogenesis in Paracoccidioides brasiliensis mycelium reveals novel and induced genes potentially associated to the dimorphic process. BMC Microbiol 7:29

    Article  PubMed  Google Scholar 

  • Brzywczy J, Paszewski A (1994) Sulfur amino acid metabolism in Schizosaccharomyces pombe: occurrence of two O-acetylhomoserine sulfhydrylases and the lack of the reverse transsulfuration pathway. FEMS Microbiol Lett 121:171–174

    Article  PubMed  CAS  Google Scholar 

  • Bourbouloux A, Shahi P, Chakladar A, Delrot S, Bachhawat AK (2000) Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. J Biol Chem 275:13259–13265

    Article  PubMed  CAS  Google Scholar 

  • Burton E, Selhub J, Sakami W (1969) The substrate specificity of 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase. Biochem J 111:793–795

    PubMed  CAS  Google Scholar 

  • Chapman SW, Sullivan DC, Cleary JD (2008) In search of the holy grail of antifungal therapy. Trans Am Clin Climatol Assoc 119:197–215, discussion 215–216

    PubMed  Google Scholar 

  • Cheson BD (1995) Infectious and immunosuppressive complications of purine analog therapy. J Clin Oncol 13:2431–2448

    PubMed  CAS  Google Scholar 

  • Chen Z, Chakraborty S, Banerjee R (1995) Demonstration that mammalian methionine synthases are predominantly cobalamin-loaded. J Biol Chem 270:19246–19249

    Article  PubMed  CAS  Google Scholar 

  • Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular characterization of two high affinity sulphate transporters in Saccharomyces cerevisiae. Genetics 145:627–635

    PubMed  CAS  Google Scholar 

  • Cherest H, Surdin-Kerjan Y (1992) Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics 130:51–58

    PubMed  CAS  Google Scholar 

  • Chow ED, Liu OW, O'Brien S, Madhani HD (2007) Exploration of whole-genome responses of the human AIDS-associated yeast pathogen Cryptococcus neoformans var grubii: nitric oxide stress and body temperature. Curr Genet 52:137–148

    Article  PubMed  CAS  Google Scholar 

  • Csaikl U, Csaikl F (1986) Molecular cloning and characterization of the MET6 gene of Saccharomyces cerevisiae. Gene 46:207–214

    Article  PubMed  CAS  Google Scholar 

  • Del Poeta M, Cruz MC, Cardenas ME, Perfect JR, Heitman J (2000) Synergistic antifungal activities of bafilomycin A(1), fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743, 873) with calcineurin inhibitors FK506 and L-685, 818 against Cryptococcus neoformans. Antimicrob Agents Chemother 44:739–746

    Article  PubMed  Google Scholar 

  • Enjalbert B, Nantel A, Whiteway M (2003) Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell 14:1460–1467

    Article  PubMed  CAS  Google Scholar 

  • Ejim LJ, D'Costa VM, Elowe NH, Loredo-Osti JC, Malo D, Wright GD (2004) Cystathionine beta-lyase is important for virulence of Salmonella enterica serovar Typhimurium. Infect Immun 72:3310–3314

    Article  PubMed  CAS  Google Scholar 

  • Fan W, Kraus PR, Boily MJ, Heitman J (2005) Cryptococcus neoformans gene expression during murine macrophage infection. Eukaryot Cell 4:1420–1433

    Article  PubMed  CAS  Google Scholar 

  • Felipe MS, Andrade RV, Arraes FB, Nicola AM, Maranhao AQ, Torres FA, Silva-Pereira I, Pocas-Fonseca MJ, Campos EG, Moraes LM, Andrade PA, Tavares AH, Silva SS, Kyaw CM, Souza DP, Pereira M, Jesuino RS, Andrade EV, Parente JA, Oliveira GS, Barbosa MS, Martins NF, Fachin AL, Cardoso RS, Passos GA, Almeida NF, Walter ME, Soares CM, Carvalho MJ, Brigido MM (2005) Transcriptional profiles of the human pathogenic fungus Paracoccidioides brasiliensis in mycelium and yeast cells. J Biol Chem 280:24706–24714

    Article  PubMed  Google Scholar 

  • Ferreira ME, Marques Edos R, Malavazi I, Torres I, Restrepo A, Nunes LR, de Oliveira RC, Goldman MH, Goldman GH (2006) Transcriptome analysis and molecular studies on sulfur metabolism in the human pathogenic fungus Paracoccidioides brasiliensis. Mol Genet Genomics 276:450–463

    Article  PubMed  CAS  Google Scholar 

  • Fradin C, De Groot P, MacCallum D, Schaller M, Klis F, Odds FC, Hube B (2005) Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56:397–415

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Takegawa K (2004) Characterization of two genes encoding putative cysteine synthase required for cysteine biosynthesis in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 68:306–311

    Article  PubMed  CAS  Google Scholar 

  • Ganguli D, Kumar C, Bachhawat AK (2007) The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae. Genetics 175:1137–1151

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, d'Enfert C (2004) Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3:536–545

    Article  PubMed  CAS  Google Scholar 

  • Guttormsen AB, Solheim E, Refsum H (2004) Variation in plasma cystathionine and its relation to changes in plasma concentrations of homocysteine and methionine in healthy subjects during a 24-h observation period. Am J Clin Nutr 79:76–79

    PubMed  CAS  Google Scholar 

  • Hanson MA, Marzluf GA (1973) Regulation of a sulfur-controlled protease in Neurospora crassa. J Bacteriol 116:785–789

    PubMed  CAS  Google Scholar 

  • Hanson MA, Marzluf GA (1975) Control of the synthesis of a single enzyme by multiple regulatory circuits in Neurospora crassa. Proc Natl Acad Sci USA 72:1240–1244

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka H, Ariga N, Nagai J, Katsuki H (1974) Accumulation of a sterol intermediate during reaction in the presence of homocysteine with cell-free extract of yeast. Biochem Biophys Res Commun 60:787–793

    Article  PubMed  CAS  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Howard DH, Dabrowa N, Otto V, Rhodes J (1980) Cysteine transport and sulfite reductase activity in a germination-defective mutant of Histoplasma capsulatum. J Bacteriol 141:417–421

    PubMed  CAS  Google Scholar 

  • Hromatka BS, Noble SM, Johnson AD (2005) Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell 16:4814–4826

    Article  PubMed  CAS  Google Scholar 

  • Hwang L, Hocking-Murray D, Bahrami AK, Andersson M, Rine J, Sil A (2003) Identifying phase-specific genes in the fungal pathogen Histoplasma capsulatum using a genomic shotgun microarray. Mol Biol Cell 14:2314–2326

    Article  PubMed  CAS  Google Scholar 

  • Isnard AD, Thomas D, Surdin-Kerjan Y (1996) The study of methionine uptake in Saccharomyces cerevisiae reveals a new family of amino acid permeases. J Mol Biol 262:473–484

    Article  PubMed  CAS  Google Scholar 

  • Jacques SL, Mirza IA, Ejim L, Koteva K, Hughes DW, Green K, Kinach R, Honek JF, Lai HK, Berghuis AM, Wright GD (2003) Enzyme-assisted suicide: molecular basis for the antifungal activity of 5-hydroxy-4-oxonorvaline by potent inhibition of homoserine dehydrogenase. Chem Biol 10:989–995

    Article  PubMed  CAS  Google Scholar 

  • Jones DP, Carlson JL, Mody VC, Cai J, Lynn MJ, Sternberg P (2000) Redox state of glutathione in human plasma. Free Radic Biol Med 28:625–635

    Article  PubMed  CAS  Google Scholar 

  • Jacobson ES, Harrell AC (1981) Selenocystine-resistant mutants of Histoplasma capsulatum. Mycopathologia 73:177–181

    Article  PubMed  CAS  Google Scholar 

  • Jung K, Park J, Choi J, Park B, Kim S, Ahn K, Choi D, Kang S, Lee YH (2008) SNUGB: a versatile genome browser supporting comparative and functional fungal genomics. BMC Genomics 9:586

    Article  PubMed  Google Scholar 

  • Kaur J, Bachhawat AK (2007) Yct1p, a novel, high-affinity, cysteine-specific transporter from the yeast Saccharomyces cerevisiae. Genetics 176:877–890

    Article  PubMed  CAS  Google Scholar 

  • Kunert J (1972) Keratin decomposition by dermatophytes: evidence of the sulphitolysis of the protein. Experientia 28:1025–1026

    Article  PubMed  CAS  Google Scholar 

  • Kunert J (1976) Keratin decomposition by dermatophytes. II. Presence of s- sulfocysteine and cysteic acid in soluble decomposition products. Z Allg Mikrobiol 16:97–105

    Article  PubMed  CAS  Google Scholar 

  • Kunert J (1981) Inorganic sulphur sources for the growth of the dermatophyte Microsporum gypseum. Folia Microbiol (Praha) 26:196–200

    Article  CAS  Google Scholar 

  • Kuras L, Cherest H, Surdin-Kerjan Y, Thomas D (1996) A heteromeric complex containing the centromere binding factor 1 and two basic leucine zipper factors, Met4 and Met28, mediates the transcription activation of yeast sulfur metabolism. EMBO J 15:2519–2529

    PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Bennett JE (1992) Medical mycology. Lea & Febiger, Philadelphia

    Google Scholar 

  • Kwon-Chung KJ, Rhodes JC (1986) Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun 51:218–223

    PubMed  CAS  Google Scholar 

  • Lechenne B, Reichard U, Zaugg C, Fratti M, Kunert J, Boulat O, Monod M (2007) Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiology 153:905–913

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MC, Bender JA, Fink GR (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3:1076–1087

    Article  PubMed  CAS  Google Scholar 

  • Maresca B, Jacobson E, Medoff G, Kobayashi G (1978) Cystine reductase in the dimorphic fungus Histoplasma capsulatum. J Bacteriol 135:987–992

    PubMed  CAS  Google Scholar 

  • Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81:1499–1533

    PubMed  CAS  Google Scholar 

  • McCammon MT, Parks LW (1981) Inhibition of sterol transmethylation by S-adenosylhomocysteine analogs. J Bacteriol 145:106–112

    PubMed  CAS  Google Scholar 

  • Missall TA, Pusateri ME, Donlin MJ, Chambers KT, Corbett JA, Lodge JK (2006) Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence. Eukaryot Cell 5:518–529

    Article  PubMed  CAS  Google Scholar 

  • Murillo LA, Newport G, Lan CY, Habelitz S, Dungan J, Agabian NM (2005) Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot Cell 4:1562–1573

    Article  PubMed  CAS  Google Scholar 

  • Natorff R, Sienko M, Brzywczy J, Paszewski A (2003) The Aspergillus nidulans metR gene encodes a bZIP protein which activates transcription of sulphur metabolism genes. Mol Microbiol 49:1081–1094

    Article  PubMed  CAS  Google Scholar 

  • Nazi I, Scott A, Sham A, Rossi L, Williamson PR, Kronstad JW, Wright GD (2007) Role of homoserine transacetylase as a new target for antifungal agents. Antimicrob Agents Chemother 51:1731–1746

    Article  PubMed  CAS  Google Scholar 

  • Nittler MP, Hocking-Murray D, Foo CK, Sil A (2005) Identification of Histoplasma capsulatum transcripts induced in response to reactive nitrogen species. Mol Biol Cell 16:4792–4813

    Article  PubMed  CAS  Google Scholar 

  • Nozaki T, Ali V, Tokoro M (2005) Sulfur-containing amino acid metabolism in parasitic protozoa. Adv Parasitol 60:1–99

    Article  PubMed  Google Scholar 

  • Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279

    Article  PubMed  CAS  Google Scholar 

  • Ono B, Heike C, Yano Y, Inoue T, Naito K, Nakagami S, Yamane A (1992) Cloning and mapping of the CYS4 gene of Saccharomyces cerevisiae. Curr Genet 21:285–289

    Article  PubMed  CAS  Google Scholar 

  • Paietta JV, Akins RA, Lambowitz AM, Marzluf GA (1987) Molecular cloning and characterization of the cys-3 regulatory gene of Neurospora crassa. Mol Cell Biol 7:2506–2511

    PubMed  CAS  Google Scholar 

  • Paris S, Duran-Gonzalez S, Mariat F (1985) Nutritional studies on Paracoccidioides brasiliensis: the role of organic sulfur in dimorphism. Sabouraudia 23:85–92

    Article  PubMed  CAS  Google Scholar 

  • Parks LW, Casey WM (1995) Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol 49:95–116

    Article  PubMed  CAS  Google Scholar 

  • Pascon RC, Ganous TM, Kingsbury JM, Cox GM, McCusker JH (2004) Cryptococcus neoformans methionine synthase: expression analysis and requirement for virulence. Microbiology 150:3013–3023

    Article  PubMed  CAS  Google Scholar 

  • Pfaller MA, Diekema DJ (2004) Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol 42:4419–4431

    Article  PubMed  CAS  Google Scholar 

  • Rodaki A, Young T, Brown AJ (2006) Effects of depleting the essential central metabolic enzyme fructose-1, 6-bisphosphate aldolase on the growth and viability of Candida albicans: implications for antifungal drug target discovery. Eukaryot Cell 5:1371–1377

    Article  PubMed  CAS  Google Scholar 

  • Rogers PD, Barker KS (2003) Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 47:1220–1227

    Article  PubMed  CAS  Google Scholar 

  • Rubin-Bejerano I, Fraser I, Grisafi P, Fink GR (2003) Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci USA 100:11007–11012

    Article  PubMed  CAS  Google Scholar 

  • Salvin SB (1949) Cysteine and related compounds in the growth of the yeast like phase of Histoplasma capsulatum. J Infect Dis 84:275–283

    Article  PubMed  CAS  Google Scholar 

  • Scherr GH (1957) Studies on the dimorphism of Histoplasma capsulatum. I. The roles of -SH groups and incubation temperature. Exp Cell Res 12:92–107

    Article  PubMed  CAS  Google Scholar 

  • Senaratne RH, De Silva AD, Williams SJ, Mougous JD, Reader JR, Zhang T, Chan S, Sidders B, Lee DH, Chan J, Bertozzi CR, Riley LW (2006) 5'-Adenosinephosphosulphate reductase (CysH) protects Mycobacterium tuberculosis against free radicals during chronic infection phase in mice. Mol Microbiol 59:1744–1753

    Article  PubMed  CAS  Google Scholar 

  • Stahl WH, Mc QB et al (1949) Studies on the microbiological degradation of wool; sulfur metabolism. Arch Biochem 20:422–432

    PubMed  CAS  Google Scholar 

  • Stetler DA, Boguslawski G (1979) Cysteine biosynthesis in a fungus, Histoplasma capsulatum. Sabouraudia 17:23–34

    Article  PubMed  CAS  Google Scholar 

  • Suliman HS, Appling DR, Robertus JD (2007) The gene for cobalamin-independent methionine synthase is essential in Candida albicans: a potential antifungal target. Arch Biochem Biophys 467:218–226

    Article  PubMed  CAS  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    PubMed  CAS  Google Scholar 

  • Triguero A, Barber T, Garcia C, Puertes IR, Sastre J, Vina JR (1997) Liver intracellular L-cysteine concentration is maintained after inhibition of the trans-sulfuration pathway by propargylglycine in rats. Br J Nutr 78:823–831

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam KV (2003) Human 3'-phosphoadenosine 5′-phosphosulfate (PAPS) synthase: biochemistry, molecular biology and genetic deficiency. IUBMB Life 55:1–11

    PubMed  CAS  Google Scholar 

  • Venkatesan G, Singh AJA, Murugesan AG, Janaki C, Shanker SG (2007) Trichophyton rubrum- the predominant etiological agent in human dermatophytes in chennai, INDIA. African Journal of Microbiology Research 1:9–12

    Google Scholar 

  • Viaene J, Tiels P, Logghe M, Dewaele S, Martinet W, Contreras R (2000) MET15 as a visual selection marker for Candida albicans. Yeast 16:1205–1215

    Article  PubMed  CAS  Google Scholar 

  • Walker J, Barrett J (1997) Parasite sulphur amino acid metabolism. Int J Parasitol 27:883–897

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Aisen P, Casadevall A (1995) Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun 63:3131–3136

    PubMed  CAS  Google Scholar 

  • Wang LK, Shuman S (2005) Structure–function analysis of yeast tRNA ligase. RNA 11:966–975

    Article  PubMed  CAS  Google Scholar 

  • White TC, Oliver BG, Graser Y, Henn MR (2008) Generating and testing molecular hypotheses in the dermatophytes. Eukaryot Cell 7:1238–1245

    Article  PubMed  CAS  Google Scholar 

  • Willins DA, Kessler M, Walker SS, Reyes GR, Cottarel G (2002) Genomics strategies for antifungal drug discovery — from gene discovery to compound screening. Curr Pharm Des 8:1137–1154

    Article  PubMed  CAS  Google Scholar 

  • Winters MS, Spellman DS, Chan Q, Gomez FJ, Hernandez M, Catron B, Smulian AG, Neubert TA, Deepe GS Jr (2008) Histoplasma capsulatum proteome response to decreased iron availability. Proteome Sci 6:36

    Article  PubMed  Google Scholar 

  • Yamaguchi H, Uchida K, Hiratani T, Nagate T, Watanabe N, Omura S (1988) RI-331, a new antifungal antibiotic. Ann N Y Acad Sci 544:188–190

    Article  PubMed  CAS  Google Scholar 

  • Yamaki H, Yamaguchi M, Imamura H, Suzuki H, Nishimura T, Saito H, Yamaguchi H (1990) The mechanism of antifungal action of (S)-2-amino-4-oxo-5-hydroxypentanoic acid, RI-331: the inhibition of homoserine dehydrogenase in Saccharomyces cerevisiae. Biochem Biophys Res Commun 168:837–843

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Pascon RC, Alspaugh A, Cox GM, McCusker JH (2002) Molecular and genetic analysis of the Cryptococcus neoformans MET3 gene and a met3 mutant. Microbiology 148:2617–2625

    PubMed  CAS  Google Scholar 

  • Zaugg C, Monod M, Weber J, Harshman K, Pradervand S, Thomas J, Bueno M, Giddey K, Staib P (2009) Gene expression profiling in the human pathogenic dermatophyte Trichophyton rubrum during growth on proteins. Eukaryot Cell 8:241–250

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Kumar Bachhawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bachhawat, A.K., Yadav, A.K. (2010). Metabolic Pathways as Drug Targets: Targeting the Sulphur Assimilatory Pathways of Yeast and Fungi for Novel Drug Discovery. In: Ahmad, I., Owais, M., Shahid, M., Aqil, F. (eds) Combating Fungal Infections. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12173-9_14

Download citation

Publish with us

Policies and ethics