Skip to main content

Silencing Huntington’s Disease Gene with RNAi

  • Chapter
  • First Online:

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Huntington’s disease (HD), a hereditary condition afflicting 30,000 Americans, cannot be treated by existing therapies and it is universally fatal. It is characterized by movement disorder (Huntington’s chorea), emotional distress, and dementia. HD is caused by a highly penetrant, autosomal-dominant mutation in the HD gene at chromosomal locus 4p16.3. Expansion of the CAG repeat at the 5′-end of this gene increases the number of tandem glutamine residues in the encoded protein (huntingtin) from under 30 to 36–100 (or more). Most HD patients are heterozygotes, carrying one allele for the polyQ-expanded mutant huntingtin and one for the wild-type protein. The former protein is harmful, particularly to striatal neurons, whereas the latter is essential to neuronal survival. Experiments using RNAi are expanding our understanding of the functions of wild-type huntingtin. Using this technique, RNAi-based therapies for HD are being developed. Biotechnologies using both allele-specific and allele-nonspecific RNAi have proven effective at countering disease progression in multiple transgenic animal models for HD. RNAi against the transgene (mutant human HD transcript) decreases expression of the pathogenic protein and slows neurodegeneration. RNAi can be directed at a polymorphism linked to the polyQ-expansion mutation in HD. Consequently, the mutant allele is silenced while the wild-type one remains expressed. Such allele-specific silencing has been achieved in fibroblasts from HD patients. Technical improvements in local and systemic delivery combined with chemical modifications to the RNAi should improve efficiency and specificity thereby making RNAi-based therapy a successful treatment for HD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allerson CR, Sioufi N, Jarres R et al (2005) Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem 48:901–904

    PubMed  CAS  Google Scholar 

  • Almqvist E, Spence N, Nichol K et al (1995) Ancestral differences in the distribution of the delta 2642 glutamic acid polymorphism is associated with varying CAG repeat lengths on normal chromosomes: insights into the genetic evolution of Huntington disease. Hum Mol Genet 4:207–214

    PubMed  CAS  Google Scholar 

  • Amarzguioui M, Holen T, Babaie E et al (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 31:589–595

    PubMed  CAS  Google Scholar 

  • Ambrose CM, Duyao MP, Barnes G et al (1994) Structure and expression of the Huntington's disease gene: evidence against simple inactivation due to an expanded CAG repeat. Somat Cell Mol Genet 20:27–38

    PubMed  CAS  Google Scholar 

  • Bernard V, Normand E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–3600

    PubMed  CAS  Google Scholar 

  • Birmingham A, Anderson EM, Reynolds A et al (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3:199–204

    PubMed  CAS  Google Scholar 

  • Boudreau RL, Davidson BL (2006) RNAi therapy for neurodegenerative diseases. Curr Top Dev Biol 75:73–92

    PubMed  CAS  Google Scholar 

  • Boudreau RL, McBride JL, Martins I et al (2009) Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington's disease mice. Mol Ther 17:1053–1063

    PubMed  CAS  Google Scholar 

  • Bumcrot D, Manoharan M, Koteliansky V et al (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2:711–719

    PubMed  CAS  Google Scholar 

  • Burger C, Gorbatyuk OS, Velardo MJ et al (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10:302–317

    PubMed  CAS  Google Scholar 

  • Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington's disease. Nat Rev Neurosci 6:919–930

    PubMed  CAS  Google Scholar 

  • Caviston JP, Ross JL, Antony SM et al (2007) Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc Natl Acad Sci USA 104:10045–10050

    PubMed  CAS  Google Scholar 

  • Chai Y, Koppenhafer SL, Bonini NM et al (1999) Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J Neurosci 19:10338–10347

    PubMed  CAS  Google Scholar 

  • Chao JR, Parganas E, Boyd K et al (2008) Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature 452:98–102

    PubMed  CAS  Google Scholar 

  • Chu TC, Twu KY, Ellington AD et al (2006) Aptamer mediated siRNA delivery. Nucleic Acids Res 34:e73

    PubMed  Google Scholar 

  • Crombez L, Charnet A, Morris MC et al (2007) A non-covalent peptide-based strategy for siRNA delivery. Biochem Soc Trans 35:44–46

    PubMed  CAS  Google Scholar 

  • Czauderna F, Fechtner M, Dames S et al (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31:2705–2716

    PubMed  CAS  Google Scholar 

  • Dail M, Richter M, Godement P et al (2006) Eph receptors inactivate R-Ras through different mechanisms to achieve cell repulsion. J Cell Sci 119:1244–1254

    PubMed  CAS  Google Scholar 

  • Dande P, Prakash TP, Sioufi N et al (2006) Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J Med Chem 49:1624–1634

    PubMed  CAS  Google Scholar 

  • Davidson BL, Stein CS, Heth JA et al (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci USA 97:3428–3432

    PubMed  CAS  Google Scholar 

  • Davidson TJ, Harel S, Arboleda VA et al (2004) Highly efficient small interfering RNA delivery to primary mammalian neurons induces microRNA-like effects before mRNA degradation. J Neurosci 24:10040–10046

    PubMed  CAS  Google Scholar 

  • de Almeida LP, Ross CA, Zala D et al (2002) Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length. J Neurosci 22:3473–3483

    PubMed  Google Scholar 

  • del Toro D, Alberch J, Lazaro-Dieguez F et al (2009) Mutant huntingtin impairs post-Golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus. Mol Biol Cell 20:1478–1492

    PubMed  Google Scholar 

  • Denovan-Wright EM, Davidson BL (2006) RNAi: a potential therapy for the dominantly inherited nucleotide repeat diseases. Gene Ther 13:525–531

    PubMed  CAS  Google Scholar 

  • Denovan-Wright EM, Rodriguez-Lebron E, Lewin AS et al (2008) Unexpected off-targeting effects of anti-huntingtin ribozymes and siRNA in vivo. Neurobiol Dis 29:446–455

    PubMed  CAS  Google Scholar 

  • DiFiglia M, Sapp E, Chase K et al (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14:1075–1081

    PubMed  CAS  Google Scholar 

  • DiFiglia M, Sena-Esteves M, Chase K et al (2007) Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci USA 104:17204–17209

    PubMed  CAS  Google Scholar 

  • Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511

    PubMed  CAS  Google Scholar 

  • Doumanis J, Wada K, Kino Y et al (2009) RNAi screening in Drosophila cells identifies new modifiers of mutant huntingtin aggregation. PLoS One 4:e7275

    PubMed  Google Scholar 

  • Dragatsis I, Levine MS, Zeitlin S (2000) Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet 26:300–306

    Google Scholar 

  • Drouet V, Perrin V, Hassig R et al (2009) Sustained effects of nonallele-specific Huntingtin silencing. Ann Neurol 65:276–285

    PubMed  CAS  Google Scholar 

  • Duyao MP, Auerbach AB, Ryan A et al (1995) Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 269:407–410

    PubMed  CAS  Google Scholar 

  • Franich NR, Fitzsimons HL, Fong DM et al (2008) AAV vector-mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington's disease. Mol Ther 16:947–956

    PubMed  CAS  Google Scholar 

  • Futaki S, Ohashi W, Suzuki T et al (2001) Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chem 12:1005–1011

    PubMed  CAS  Google Scholar 

  • Gacy AM, Goellner G, Juranic N et al (1995) Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81:533–540

    PubMed  CAS  Google Scholar 

  • Goehler H, Lalowski M, Stelzl U et al (2004) A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. Mol Cell 15:853–865

    PubMed  CAS  Google Scholar 

  • Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    PubMed  CAS  Google Scholar 

  • Gunawardena S, Her LS, Brusch RG et al (2003) Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40:25–40

    PubMed  CAS  Google Scholar 

  • Haley B, Zamore PD (2004) Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol 11:599–606

    PubMed  CAS  Google Scholar 

  • Harper SQ (2009) Progress and challenges in RNA interference therapy for Huntington disease. Arch Neurol 66:933–938

    PubMed  Google Scholar 

  • Harper SQ, Staber PD, He X et al (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc Natl Acad Sci USA 102:5820–5825

    PubMed  CAS  Google Scholar 

  • Hodgson JG, Agopyan N, Gutekunst CA et al (1999) A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23:181–192

    PubMed  CAS  Google Scholar 

  • Hood C, Cunningham AL, Slobedman B et al (2006) Varicella-zoster virus ORF63 inhibits apoptosis of primary human neurons. J Virol 80:1025–1031

    PubMed  CAS  Google Scholar 

  • Hoshika S, Minakawa N, Matsuda A (2004) Synthesis and physical and physiological properties of 4′-thioRNA: application to post-modification of RNA aptamer toward NF-kappaB. Nucleic Acids Res 32:3815–3825

    PubMed  CAS  Google Scholar 

  • Hu J, Matsui M, Corey DR (2009) Allele-selective inhibition of mutant huntingtin by peptide nucleic acid-peptide conjugates, locked nucleic acid, and small interfering RNA. Ann NY Acad Sci 1175:24–31

    PubMed  CAS  Google Scholar 

  • Huang B, Schiefer J, Sass C et al (2007) High-capacity adenoviral vector-mediated reduction of huntingtin aggregate load in vitro and in vivo. Hum Gene Ther 18:303–311

    PubMed  CAS  Google Scholar 

  • Inagaki R, Tagawa K, Qi ML et al (2008) Omi/HtrA2 is relevant to the selective vulnerability of striatal neurons in Huntington's disease. Eur J Neurosci 28:30–40

    PubMed  Google Scholar 

  • Ince E, Ciliax BJ, Levey AI (1997) Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 27:357–366

    PubMed  CAS  Google Scholar 

  • Jackson AL, Bartz SR, Schelter J et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    PubMed  CAS  Google Scholar 

  • Jackson AL, Burchard J, Leake D et al (2006a) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12:1197–1205

    PubMed  CAS  Google Scholar 

  • Jackson AL, Burchard J, Schelter J et al (2006b) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12:1179–1187

    PubMed  CAS  Google Scholar 

  • Jankowski MP, McIlwrath SL, Jing X et al (2009) Sox11 transcription factor modulates peripheral nerve regeneration in adult mice. Brain Res 1256:43–54

    PubMed  CAS  Google Scholar 

  • Jin K, LaFevre-Bernt M, Sun Y et al (2005) FGF-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington's disease. Proc Natl Acad Sci USA 102:18189–18194

    PubMed  CAS  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    PubMed  CAS  Google Scholar 

  • Kotliarova S, Jana NR, Sakamoto N et al (2005) Decreased expression of hypothalamic neuropeptides in Huntington disease transgenic mice with expanded polyglutamine-EGFP fluorescent aggregates. J Neurochem 93:641–653

    PubMed  CAS  Google Scholar 

  • Kuida K, Zheng TS, Na S et al (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    PubMed  CAS  Google Scholar 

  • Kumar P, Wu H, McBride JL et al (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43

    PubMed  CAS  Google Scholar 

  • Leavitt BR, van Raamsdonk JM, Shehadeh J et al (2006) Wild-type huntingtin protects neurons from excitotoxicity. J Neurochem 96:1121–1129

    PubMed  CAS  Google Scholar 

  • Lin X, Ruan X, Anderson MG et al (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 33:4527–4535

    PubMed  CAS  Google Scholar 

  • Liu W, Kennington LA, Rosas HD et al (2008) Linking SNPs to CAG repeat length in Huntington's disease patients. Nat Methods 5:951–953

    PubMed  CAS  Google Scholar 

  • Lombardi MS, Jaspers L, Spronkmans C et al (2009) A majority of Huntington's disease patients may be treatable by individualized allele-specific RNA interference. Exp Neurol 217:312–319

    PubMed  CAS  Google Scholar 

  • Machida Y, Okada T, Kurosawa M et al (2006) rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse. Biochem Biophys Res Commun 343:190–197

    PubMed  CAS  Google Scholar 

  • Mangiarini L, Sathasivam K, Seller M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    PubMed  CAS  Google Scholar 

  • McBride JL, Boudreau RL, Harper SQ et al (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci USA 105:5868–5873

    PubMed  CAS  Google Scholar 

  • Menalled LB, Chesselet MF (2002) Mouse models of Huntington's disease. Trends Pharmacol Sci 23:32–39

    PubMed  CAS  Google Scholar 

  • Morrissey DV, Lockridge JA, Shaw L et al (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007

    PubMed  CAS  Google Scholar 

  • Muratovska A, Eccles MR (2004) Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett 558:63–68

    PubMed  CAS  Google Scholar 

  • Nasir J, Floresco SB, O'Kusky JR et al (1995) Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81:811–823

    PubMed  CAS  Google Scholar 

  • Novelletto A, Persichetti F, Sabbadini G et al (1994) Polymorphism analysis of the huntingtin gene in Italian families affected with Huntington disease. Hum Mol Genet 3:1129–1132

    PubMed  CAS  Google Scholar 

  • Omi K, Hachiya NS, Tokunaga K et al (2005) siRNA-mediated inhibition of endogenous Huntington disease gene expression induces an aberrant configuration of the ER network in vitro. Biochem Biophys Res Commun 338:1229–1235

    PubMed  CAS  Google Scholar 

  • Palfi S, Brouillet E, Jarraya B et al (2007) Expression of mutated huntingtin fragment in the putamen is sufficient to produce abnormal movement in non-human primates. Mol Ther 15:1444–1451

    PubMed  CAS  Google Scholar 

  • Paterna JC, Feldon J, Bueler H (2004) Transduction profiles of recombinant adeno-associated virus vectors derived from serotypes 2 and 5 in the nigrostriatal system of rats. J Virol 78:6808–6817

    PubMed  CAS  Google Scholar 

  • Qin ZH, Wang Y, Sapp E et al (2004) Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J Neurosci 24:269–281

    PubMed  CAS  Google Scholar 

  • Qiu S, Adema CM, Lane T (2005) A computational study of off-target effects of RNA interference. Nucleic Acids Res 33:1834–1847

    PubMed  CAS  Google Scholar 

  • Reynolds A, Leake D, Boese Q et al (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    PubMed  CAS  Google Scholar 

  • Rodriguez-Lebron E, Denovan-Wright EM, Nash K et al (2005) Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington's disease transgenic mice. Mol Ther 12:618–633

    PubMed  CAS  Google Scholar 

  • Rubinsztein DC, Leggo J, Goodburn S et al (1995) Haplotype analysis of the delta 2642 and (CAG)n polymorphisms in the Huntington's disease (HD) gene provides an explanation for an apparent ‘founder’ HD haplotype. Hum Mol Genet 4:203–206

    PubMed  CAS  Google Scholar 

  • Schilling G, Becher MW, Sharp AH et al (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 8:397–407

    PubMed  CAS  Google Scholar 

  • Schwartz EI (2009) Potential application of RNAi for understanding and therapy of neurodegenerative diseases. Front Biosci 14:297–320

    PubMed  CAS  Google Scholar 

  • Schwarz DS, Ding H, Kennington L et al (2006) Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet 2:e140

    PubMed  Google Scholar 

  • Schwarz DS, Hutvagner G, Du T et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    PubMed  CAS  Google Scholar 

  • Seng S, Avraham HK, Jiang S et al (2006) KLHL1/MRP2 mediates neurite outgrowth in a glycogen synthase kinase 3beta-dependent manner. Mol Cell Biol 26:8371–8384

    PubMed  CAS  Google Scholar 

  • Senut MC, Suhr ST, Kaspar B et al (2000) Intraneuronal aggregate formation and cell death after viral expression of expanded polyglutamine tracts in the adult rat brain. J Neurosci 20:219–229

    PubMed  CAS  Google Scholar 

  • Shin JY, Fang ZH, Yu ZX et al (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 171:1001–1012

    PubMed  CAS  Google Scholar 

  • Simeoni F, Morris MC, Heitz F et al (2005) Peptide-based strategy for siRNA delivery into mammalian cells. Methods Mol Biol 309:251–260

    PubMed  CAS  Google Scholar 

  • Slow EJ, van Raamsdonk J, Rogers D et al (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12:1555–1567

    PubMed  CAS  Google Scholar 

  • Sobczak K, de Mezer M, Michlewski G et al (2003) RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res 31:5469–5482

    PubMed  CAS  Google Scholar 

  • Steffan JS, Kazantsev A, Spasic-Boskovic O et al (2000) The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci USA 97:6763–6768

    PubMed  CAS  Google Scholar 

  • Strehlow AN, Li JZ, Myers RM (2007) Wild-type huntingtin participates in protein trafficking between the Golgi and the extracellular space. Hum Mol Genet 16:391–409

    PubMed  CAS  Google Scholar 

  • Tagawa K, Marubuchi S, Qi ML et al (2007) The induction levels of heat shock protein 70 differentiate the vulnerabilities to mutant huntingtin among neuronal subtypes. J Neurosci 27:868–880

    PubMed  CAS  Google Scholar 

  • Taymans JM, Vandenberghe LH, Haute CV et al (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 18:195–206

    PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72:971–983

    Google Scholar 

  • Tonges L, Lingor P, Egle R et al (2006) Stearylated octaarginine and artificial virus-like particles for transfection of siRNA into primary rat neurons. RNA 12:1431–1438

    PubMed  Google Scholar 

  • van Bilsen PH, Jaspers L, Lombardi MS et al (2008) Identification and allele-specific silencing of the mutant huntingtin allele in Huntington's disease patient-derived fibroblasts. Hum Gene Ther 19:710–719

    PubMed  Google Scholar 

  • Velier J, Kim M, Schwarz C et al (1998) Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp Neurol 152:34–40

    PubMed  CAS  Google Scholar 

  • Vuillaume I, Vermersch P, Destee A et al (1998) Genetic polymorphisms adjacent to the CAG repeat influence clinical features at onset in Huntington's disease. J Neurol Neurosurg Psychiatry 64:758–762

    PubMed  CAS  Google Scholar 

  • Wacker JL, Zareie MH, Fong H et al (2004) Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nat Struct Mol Biol 11:1215–1222

    PubMed  CAS  Google Scholar 

  • Waelter S, Scherzinger E, Hasenbank R et al (2001) The huntingtin interacting protein HIP1 is a clathrin and alpha-adaptin-binding protein involved in receptor-mediated endocytosis. Hum Mol Genet 10:1807–1817

    PubMed  CAS  Google Scholar 

  • Wang YL, Liu W, Wada E et al (2005) Clinico-pathological rescue of a model mouse of Huntington's disease by siRNA. Neurosci Res 53:241–249

    PubMed  CAS  Google Scholar 

  • Warby SC, Montpetit A, Hayden AR et al (2009) CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am J Hum Genet 84:351–366

    PubMed  CAS  Google Scholar 

  • Warrick JM, Chan HY, Gray-Board GL et al (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425–428

    PubMed  CAS  Google Scholar 

  • Weiner DM, Levey AI, Brann MR (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA 87:7050–7054

    PubMed  CAS  Google Scholar 

  • Woda JM, Calzonetti T, Hilditch-Maquire P et al (2005) Inactivation of the Huntington's disease gene (Hdh) impairs anterior streak formation and early patterning of the mouse embryo. BMC Dev Biol 5:17

    PubMed  Google Scholar 

  • Yamamoto A, Lucas JJ, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101:57–66

    PubMed  CAS  Google Scholar 

  • Yang YC, Lin CH, Lee EH (2006) Serum- and glucocorticoid-inducible kinase 1 (SGK1) increases neurite formation through microtubule depolymerization by SGK1 and by SGK1 phosphorylation of tau. Mol Cell Biol 26:8357–8370

    PubMed  CAS  Google Scholar 

  • Zeitlin S, Liu JP, Chapman DL et al (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat Genet 11:155–163

    PubMed  CAS  Google Scholar 

  • Zhang H, Das S, Li QZ et al (2008) Elucidating a normal function of huntingtin by functional and microarray analysis of huntingtin-null mouse embryonic fibroblasts. BMC Neurosci 9:38

    PubMed  Google Scholar 

  • Zhang Y, Engelman J, Friedlander RM (2009) Allele-specific silencing of mutant Huntington's disease gene. J Neurochem 108:82–90

    PubMed  CAS  Google Scholar 

  • Zhang Y, Leavitt BR, van Raamsdonk JM et al (2006) Huntingtin inhibits caspase-3 activation. Embo J 25:5896–5906

    PubMed  CAS  Google Scholar 

  • Zhou H, Li SH, Li XJ (2001) Chaperone suppression of cellular toxicity of huntingtin is independent of polyglutamine aggregation. J Biol Chem 276:48417–48424

    PubMed  CAS  Google Scholar 

  • Zimmermann TS, Lee AC, Akinc A et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    PubMed  CAS  Google Scholar 

  • Zuccato C, Ciammola A, Rigamonti D et al (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 293:493–498

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Friedlander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y., Friedlander, R.M. (2010). Silencing Huntington’s Disease Gene with RNAi. In: Erdmann, V., Barciszewski, J. (eds) RNA Technologies and Their Applications. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12168-5_6

Download citation

Publish with us

Policies and ethics