Skip to main content

Technical Aspects of Nuclear Fuel Cycles

  • Chapter
  • First Online:
Book cover Sustainable and Safe Nuclear Fission Energy

Part of the book series: Power Systems ((POWSYS))

  • 2900 Accesses

Abstract

After discharge from the reactor core, the fuel elements are stored in a fuel element storage pool onsite for several years to allow radioactivity decay and after heat decrease. Spent fuel elements are shipped then in special fuel transport casks to either intermediate storage facilities or to the storage pool of a reprocessing plant. After a total cooling period of about 7 years LWR spent fuel elements can be chemically reprocessed. The spent fuel elements are moved from the storage pool into the disassembly cell, where they are cut up by large bundle shears into small pieces. These pieces fall into a dissolver basket filled with boiling nitric acid. The PUREX process is used to chemically separate the dissolved spent fuel into uranium, plutonium and higher actinides with fission products. The final products are uranylnitrate, plutonium nitrate and high level waste. The total capacity of commercial reprocessing facilities is currently about 4,500 t\(_\mathrm{ HM}\)/year in France, UK, Russia, Japan and India. The uranium and plutonium products can be converted into oxides and fabricated into Uranium/Plutonium mixed oxide fuel elements. The latter can be loaded into light water reactor or fast breeder reactor cores. Thorium/uranium fuel can be reprocessed using the THOREX process. The thorium/uranium-233 fuel also can be fabricated into mixed oxide fuel elements and loaded into light water reactors or fast breeder reactors. The remaining wastes are classified into high level waste, medium level waste and low level waste. The high level waste after concentration is vitrified by giving it first into a calcinator and then mixing it with borosilicate glass frits and melting this mixture to a glass. The result is a vitrified high level glass in a steel container. The fuel rod hulls and end pieces of fuel elements as well as insoluble residues are compacted by a 250 MPa press into a cylindrical container. Low level organic waste is sent to a medium temperature pyrolysis system and then to a calcination system. The end product is mixed with pastes, grouts or concrete and filled into low level waste containers. The medium and low level waste packages are sent to medium/low level waste repositories which are already in operation in France, Japan, Spain, Sweden, Finland and the USA since the early 1990s. High level waste packages are foreseen to be disposed into deep geological repositories. For the direct disposal concept of spent fuel elements either the fuel elements or only the fuel rods are loaded in high level waste containers and foreseen to be disposed in a deep geological repository. Up to now no deep geological repository is in operation, but test sites are explored and under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Nuclear Fuel Cycle Evaluation (1980) Spent fuel management. Report of INFCE working group 6. International Atomic Energy Agency, Vienna

    Google Scholar 

  2. IAEA Bulletin (1979) The safe transport of radioactive materials. Special Issue. IAEA Bull 21(6):2–75

    Google Scholar 

  3. US Department of Energy (1977) Shipments of nuclear fuel and waste: are they really safe? US Department of Energy, Washington, DOE/EV-0004

    Google Scholar 

  4. Brennelementbehälter (2010) http://de.wikipedia.org/wiki/Brennelementbeh%C3%A4lter

  5. Brennelement-Zwischenlager Ahaus (1979) Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen (DWK), Hannover

    Google Scholar 

  6. US Department of Energy (1980) Spent fuel storage factbook: facts booklet. US Department of Energy, Washington, DOE/NE-005

    Google Scholar 

  7. Entsorgung von Kernkraftwerken (2004) Arbeitskreis Abfallmanagement des VGB Power Tech. http://www.vgb.org/abfallmanagement-dfid-1235.html

  8. Kessler G (1983) Nuclear fission reactors. Springer, Wien

    Book  Google Scholar 

  9. Sindelar R (2011) Extended spent fuel storage. Nucl News 54(12):46–48

    Google Scholar 

  10. Broeders CHM (2011) Private communication, Karlsruhe Institute of Technology

    Google Scholar 

  11. Baumgärtner F (1978) Chemie der nuklearen Entsorgung. Karl Thiemig, München

    Google Scholar 

  12. Benedict M et al (1981) Nuclear chemical engineering. McGraw-Hill, New York

    Google Scholar 

  13. Bericht über das in der Bundesrepublik Deutschland geplante Entsorgungszentrum für ausgediente Brennelemente aus Kernkraftwerken (1977) Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen (DWK), Hannover

    Google Scholar 

  14. International Nuclear Fuel Cycle Evaluation (1980) Reprocessing, plutonium handling, recycle. Report of INFCE working group 4. International Atomic Energy Agency, Vienna

    Google Scholar 

  15. US Nuclear Regulatory Commission (1976) Final generic environmental statement on the use of recycle plutonium in mixed oxide fuel in light water cooled reactors (GESMO). US Nuclear Regulatory Commission, Washington, NUREG-002

    Google Scholar 

  16. McLeod HM et al (1993) Development of mixed oxide fuel manufacture in the United Kingdom and the influence of fuel characteristics on irradiation performance. Nucl Technol 102:3–17

    Google Scholar 

  17. Leblanc JM, Vanden Bernden E (1978) Chemical aspects of mixed oxide fuel production. Radiochimica Acta 25:149–152

    Google Scholar 

  18. Herbig R et al (1993) Vibrocompated fuel for the liquid metal reactor BOR-60. J Nucl Mater 204:93–101

    Article  Google Scholar 

  19. Krellmann J (1993) Plutonium processing at the Siemens Hanau fuel fabrication plant. Nucl Technol 102:18–28

    Google Scholar 

  20. Nuclear power in Russia (2010) http://www.world-nuclear.org/info/inf45.html

  21. Merz E (1978) Wiederaufarbeitung thoriumhaltiger Kernbrennstoffe im Lichte proliferationssicherer Brennstoffkreisläufe. Naturwissenschaften 65:424–431

    Article  Google Scholar 

  22. Orth DA (1979) Savannah River Plant thorium reprocessing experience. Nucl Technol 43:63–74

    Google Scholar 

  23. Hebel LC et al (1978) Report to the American Physical Society by the study group on nuclear fuel cycles and waste management Part II. Rev Mod Phys 50 (1) (Pines D (ed))

    Google Scholar 

  24. International Nuclear Fuel Cycle Evaluation (1980) Advanced fuel cycle and reactor concepts. Report of INFCE working group 8. International Atomic Energy Agency, Vienna

    Google Scholar 

  25. Feraday MA (1979) Remote fabrication of (U-233/Th)O2 pellet-type fuels for CANDU reactors. Trans Am Nucl Soc 32:233–234

    Google Scholar 

  26. Zimmer E et al (1978) Aqueous chemical processes for the preparation of high temperature reactor fuel kernels. Radiochimica Acta 25:161–169

    Google Scholar 

  27. International Nuclear Fuel Cycle Evaluation (1980) Fast breeder reactors. Report of INFCE working group 5. International Atomic Energy Agency, Vienna

    Google Scholar 

  28. Status of Liquid Metal Cooled Fast Breeder Reactors (1985) Technical report series 246, IAEA

    Google Scholar 

  29. Allardice RH et al (1977) Fast reactor fuel reprocessing in the United Kingdom. In: Nuclear power and its fuel cycle, proceedings of the international conference, Salzburg, vol 3. International Atomic Energy Agency, Vienna, 2–13 May 1977, pp 615–630

    Google Scholar 

  30. Auchapt P et al (1980) The French R & D programme for fast reactor fuel reprocessing. In: Fast reactor fuel reprocessing, proceedings of a symposium, Dounreay, Society of Chemical Industry, London, 15–18 May 1979, pp 51–59

    Google Scholar 

  31. Barret TR (1980) The reconstruction of the fast reactor reprocessing plant. In: Fast reactor fuel reprocessing, proceedings of a symposium, Dounreay, Society of Chemical Industry, London, 15–18 May 1979, pp 17–35

    Google Scholar 

  32. Baumgärtner F, Ochsenfeld W (1976) Development and status of LMFBR fuel reprocessing in the Federal Republic of Germany. Kernforschungszentrum Karlsruhe, KfK-2301

    Google Scholar 

  33. Bishop JF et al (1977) Fast reactor fuel design and development. In: Nuclear power and its fuel cycle, proceedings of the international conference, Salzburg, vol 3. International Atomic Energy Agency, Vienna, 2–13 May 1977, pp 377–391

    Google Scholar 

  34. Sauteron J et al (1977) Technologie du retraitement des combustibles des réacteurs rapides. In: Nuclear power and its fuel cycle, Proceedings of the international conference, Salzburg, vol 3. (IAEA-CN-36/567), International Atomic Energy Agency, Vienna, 2–13 May 1977, pp 633–645

    Google Scholar 

  35. Funke P et al (1980) Weiterentwicklung des oxidischen Brennstoffes zum Schnellbrütereinsatz. Atomkernenergie/Kerntechnik 36:253–258

    Google Scholar 

  36. National Research Council, Nuclear Wastes (1996) Technologies for separations and transmutation. National Academy Press, Washington

    Google Scholar 

  37. H12: Project to establish the scientific and technical basis for HLW disposal in Japan (2000) Report JNC TN 1410, 2000–001. JNC, Tokai-mura

    Google Scholar 

  38. Hill R (2009) Fuel cycle subcommittee, overview and status, fusion-fission hybrid workshop. Gaithersburg, 30 Sept 2009

    Google Scholar 

  39. Radioactive waste management (2010) http://www.world-nuclear.org/info/info04.html

  40. Nuclear Waste Conditioning, Nuclear Energy Division Monograph (2009) Commissariat à l’énergie atomique. Gif-sur-Yvette CEDEX, France

    Google Scholar 

  41. International Nuclear Fuel Cycle Evaluation (1980) Waste management and disposal. Report of INFCE working group 7. International Atomic Energy Agency, Vienna

    Google Scholar 

  42. US Department of Energy (1979) Technology of commercial radioactive waste management. US Department of Energy, Washington, DOE/ET-0028

    Google Scholar 

  43. Bröskamp H et al (2004) Endlagerung radioaktiver Abfälle in Deutschland—Abfallaufkommen und Endlagerverfügbarkeit aus EVU-Sicht. Atomwirtschaft 49:248–256

    Google Scholar 

  44. Closs KD (2001) Internationaler Stand der Entsorgung radioaktiver Abfälle, Radioaktivität und Kernenergie, ISBN 3-923704-26-7

    Google Scholar 

  45. Storck R (1992) Long time safety aspects of ultimate storage of transuranium elements. Institut für Tieflagerung, GSF-Forschungszentrum für Umwelt und Gesundheit, Neuherberg GmbH, Braunschweig

    Google Scholar 

  46. Physics and Safety of transmutation systems (2006) A status report. OECD-NEA

    Google Scholar 

  47. Luehrmann G et al (2000) Spent fuel performance assessment for a hypothetical repository in crystalline formations in Germany, GRS-154

    Google Scholar 

  48. Gompper K (2010) Private communication, Karlsruhe Institute of Technology, Institut für Nukleare Entsorgung

    Google Scholar 

  49. Morris E et al (2002) Impact of actinide removal on waste disposal in a geologic repository. In: Fifth topical meeting DOE spent nuclear fuel and fissile material management, Charleston

    Google Scholar 

  50. Davidson E et al (2006) Benefits of an integrated fuel cycle on repository effective capacity. In: Waste management conference, Tucson

    Google Scholar 

  51. Wigeland R (2006) Criteria derived for geologic disposal concepts. In: OECD/NEA 9th information exchange meeting of actinide and fission product partitioning and transmutation. Nîmes

    Google Scholar 

  52. Pigford TH et al (1983) A study of the isolation system for geological disposal of radioactive waste. National Academy Press, Washington

    Google Scholar 

  53. Pigford TH et al (1991) Effects of actinide burning on risk from high level waste. Trans Am Nucl Soc 63:80–83

    Google Scholar 

  54. Nuclear News (2001) EPA releases “final” radiation protection limits. Nucl News 44(8):52

    Google Scholar 

  55. Müller W et al (2009) Abschätzung der Standzeit von Endlagerbetten in einem zukünftigen HAW-Endlager im Salzgestein unter dem Einfluß der Korrosion. Atomwirtschaft 54:303–306

    Google Scholar 

  56. Geckeis H et al (1998) Formation and stability of colloids under simulated near field conditions. Radiochimica Acta 82:123–128

    Google Scholar 

  57. Sheppard SC et al (1996) Chlorine-36 in nuclear waste disposal. 1. Assessment results for used fuel with comparison to \(^{129}\)I and \(^{14}\)C. Waste manag 6(7):607–614

    Google Scholar 

  58. Beasly TM et al (1992) Chlorine-36 releases from the Savannah river site nuclear fuel reprocessing facilities. Groundwater 30(4):539–548

    Article  Google Scholar 

  59. Impact RED (2007) Impact of partitioning, transmutation and waste reduction technologies on final nuclear waste disposal. Synthesis report, Forschungszentrum Jülich, Germany

    Google Scholar 

  60. Cohen B (1977) High-level radioactive waste from light water reactors. Rev Mod Phys 49:1–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kessler, G. (2012). Technical Aspects of Nuclear Fuel Cycles. In: Sustainable and Safe Nuclear Fission Energy. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11990-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11990-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11989-7

  • Online ISBN: 978-3-642-11990-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics