Skip to main content

Kinetic Energy Spectra and Model Filters

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 80))

Abstract

We wish to maximize efficiency (accuracy/cost) in the design of atmospheric fluid-flow solvers. An important measure of accuracy for weather and climate applications is a model’s ability to resolve meteorologically important features at scales approaching the grid-scale. Simulated kinetic energy spectra provide a useful diagnostic for quantifying a model’s resolving capability. Using kinetic energy spectra we illustrate some of the issues affecting the resolution capabilities of models arising from the choice of spatial grid staggering, integration schemes and their implicit filters, and explicit filters. In both Eulerian and semi-Lagrangian formulations, C-grid staggering provides the best resolution of divergent modes that are an important part the KE spectrum in the mesoscale which the global models are now beginning to resolve. Other grid staggerings require special filtering that compromise resolution capabilities. The popular semi-Lagrangian semi-implicit formulations are shown to significantly damp resolvable high-frequency modes and adversely affect their resolving capabilities. While less costly at a given grid density, the SLSI models may well be significantly less efficient than Eulerian models.

The National Center for Atmospheric Research is supported by the National Science Foundation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput Phys 17:173–265

    MathSciNet  Google Scholar 

  2. Bartello P, Thomas SJ (1996) The cost-effectiveness of semi-Lagrangian advection. Mon Wea Rev 124:2883–2897

    Article  Google Scholar 

  3. Bernardet L, Nance L, Demirtas M, Koch S, Szoke E, Fowler T, Loughe A, Mahoney JL, Chuang HY, Pyle M, Gall R (2008) The developmental testbed center and its winter forecast experiment. Bull Amer Meteor Soc 89:611–627

    Article  Google Scholar 

  4. Bryan GH, Wyngaard JC, Fritsch JM (2003) Resolution requirements for the simulation of deep moist convection. Mon Wea Rev 131:2394–2415

    Article  Google Scholar 

  5. Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B (2004) Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR technical note NCAR/TN464 + STR:226 pp.

    Google Scholar 

  6. Dey CH (1978) Noise suppression in a primitive equations model. Mon Wea Rev 106:159–173

    Article  Google Scholar 

  7. Done J, Davis CA, Weisman ML (2004) The next generation of NWP: Explicit forecasts of convection using the weather research and forecasting model. Atmos Sci Lett 5:110–117

    Article  Google Scholar 

  8. Durran D, Reinecke PA (2004) Instability in a class of explicit two-time-level semi-Lagrangian schemes. Quart J Roy Meteor Soc 130:365–369

    Article  Google Scholar 

  9. ECMWF (2006) Part III: Dynamics and numerical procedures. ECMWF IFS Documentation – Cy31r1 Available at http://www.ecmwf.int/research/ifsdocs

  10. Frisch U (1995) Turbulence. Cambridge University Press

    Google Scholar 

  11. Gravel S, Staniforth A, Côté J (1993) A stability analysis of a family of baroclinic semi-Lagrangian forecast models. Mon Wea Rev 121:815–824

    Article  Google Scholar 

  12. Hamilton K, Takahashi YO, Ohfuchi W (2008) Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J Geophys Res 113

    Google Scholar 

  13. Hodur R (1997) The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon Wea Rev 125:1414–1430

    Article  Google Scholar 

  14. Hortal M (2002) The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model. Quart J Roy Meteor Soc 128:1671–1687

    Article  Google Scholar 

  15. Janjic Z (1990) The step-mountain coordinate: Physical package. Mon Wea Rev 118:1429–1443

    Article  Google Scholar 

  16. Janjic Z (2003) A nonhydrostatic model based on a new approach. Meteor Atmos Phys 82:271–285

    Article  Google Scholar 

  17. Kolmogorov A (1990) The local structure of turbulence in incompressible viscous fluid for very large reynolds number, dokl. Akad Nauk SSSR (1941) English translation in Proc R Soc Lond A 434 30:9–13

    Google Scholar 

  18. Lilly D, Bassett G, Droegemeier K, Bartello P (1998) Stratified turbulence in the atmospheric mesoscales. Theor Comput Fluid Dyn 11:139–153

    Article  MATH  Google Scholar 

  19. Lin S, Rood RB (1997) An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Quart J Roy Meteor Soc 123:2477–2498

    Article  Google Scholar 

  20. Lindborg E (1999) Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? Fluid Mech 388:259–288

    Article  MATH  Google Scholar 

  21. Lindborg E (2006) The energy cascade in a strongly stratified fluid. J Fluid Mech 550:207–242

    Article  MATH  Google Scholar 

  22. Lindborg E (2007) Horizontal wavenumber spectra of vertical vorticity and horizontal divergence in the upper troposphere and lower stratosphere. J Atmos Sci 64:1017–1025

    Article  Google Scholar 

  23. Lindborg E, Berthouwer G (2007) Stratified turbulence forced on rotational and divergent modes. J Fluid Mech 586:83–108

    Article  MATH  MathSciNet  Google Scholar 

  24. Lindborg E, Cho JY (2000) Horizontal velocity structure functions in the upper troposphere and lower stratosphere. 2 Theoretical considerations J Geophys Res D10, 11 106:0233–1024

    Google Scholar 

  25. Mason P (1994) Large-eddy simulation: A critical review of the technique. Quart J Roy Meteor Soc 120:1–26

    Article  Google Scholar 

  26. Nastrom G, Gage KS (1985) A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J Atmos Sci 42:950–960

    Article  Google Scholar 

  27. Pinty JP, Benoit R, Richard E, Laprise R (1995) Simple tests of a semi-implicit semi-Lagrangian model on 2d mountain wave problems. Mon Wea Rev 123:3042–3058

    Article  Google Scholar 

  28. Randall D (1994) Geostrophic adjustment and the finite difference shallow-water equations. Mon Wea Rev 122:1371–1377

    Article  Google Scholar 

  29. Shutts G (2005) A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q J Roy Meteor Soc 131:3079–3102

    Article  Google Scholar 

  30. Skamarock W (2004) Evaluating mesoscale NWP models using kinetic energy spectra. Mon Wea Rev 132:3019–3032

    Article  Google Scholar 

  31. Skamarock W, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comp Phys 227

    Google Scholar 

  32. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the Advanced Research WRF version 3. Ncar Technical Journal NCAR/TN-475 + STR, 113 pp

    Google Scholar 

  33. Staniforth A, Wood N (2007) Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model. J Comp Phys

    Google Scholar 

  34. Takahashi YO, Hamilton K, Ohfuchi W (2006) Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys Res Lett

    Google Scholar 

  35. Tao WK, Moncrieff MW (2009) Multiscale cloud system modeling. Rev Geophys (in press)

    Google Scholar 

  36. Weisman ML, Skamarock WC, Klemp JB (1997) The resolution dependence of explicitly modeled convective systems. Mon Wea Rev 125:527–548

    Article  Google Scholar 

  37. Wyngaard JC (2004) Changing the face of small-scale meteorology. In: Federovich, Rotunno, Stevens (eds) Atmospheric Turbulence and Mesoscale Meteorology, Cambridge University Press, pp 17–34

    Google Scholar 

  38. Xue M, Droegemeier KK, Wong V (1990) The advanced regional prediction system (ARPS) - a multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I Model dynamics and verification Meteor Atmos Phys 75:339–356

    Google Scholar 

  39. Yeh KS, Côté J, Gravel S, Méthot A, Patoine A, Roch M, Staniforth A (2002) The CMC-MRB Global Environmental Multiscale (GEM) model. Part III: Nonhydrostatic formulation. Mon Wea Rev 130:339–356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Skamarock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skamarock, W.C. (2011). Kinetic Energy Spectra and Model Filters. In: Lauritzen, P., Jablonowski, C., Taylor, M., Nair, R. (eds) Numerical Techniques for Global Atmospheric Models. Lecture Notes in Computational Science and Engineering, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11640-7_14

Download citation

Publish with us

Policies and ethics