Skip to main content

Hypofractionated Radiation Therapy in Prostate Cancer: Rationale, History, and Outcomes

  • Chapter
  • First Online:
Book cover Robotic Radiosurgery. Treating Prostate Cancer and Related Genitourinary Applications

Abstract

About 10 years ago, the first studies supporting the hypothesis that the response of prostate cancer to radiation was similar to that of slow-proliferating normal tissues were published. However, hypofractionation has been a common practice throughout radiotherapy history, mainly in western countries. The results of both experimental and clinical studies suggest that the α/β ratio for prostate cancer cells is lower than the α/β ratio for late-responding cells of the rectum and the bladder. This particularity allows the therapeutic window to be increased through the use of hypofractionated schemes. It has also been possible to establish, based on late toxicity results, that hypofractionated regimens are safe, and even without the use of IMRT or IGRT technology, the slight increases in acute toxicity found in some studies has been well tolerated. Nevertheless, to date, hypofractionation has not proved to be superior to conventionally fractionated therapy in terms of tumor control. Hypofractionation studies have so far been limited by their relatively short follow-up, a modest increase in dose per fraction (usually 2.5–3 Gy), and the difficulty to establish comparisons among different radiation techniques, hypofractionation schemes, and toxicity scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Regaud C (1977) The influence of the duration of irradiation on the changes produced in the testicle by radium. Int J Radiat Oncol Biol Phys 2:565–567

    Article  PubMed  CAS  Google Scholar 

  2. Wintz H (1931) Results obtained with carcinoma uteri treated by Rontgen-rays from 1915–1925. Ann Surg 93:428–435

    Article  PubMed  CAS  Google Scholar 

  3. Coutard H (1937) The results and methods of treatment of cancer by radiation. Ann Surg 106:584–598

    Article  PubMed  CAS  Google Scholar 

  4. Baclesse F (1953) Fractionated roentgenotherapy of epitheliomas of the pharynx, larynx, uterus, vagina and breast; study of 1449 cases. Acta Unio Int Contra Cancrum 9:29–33

    PubMed  CAS  Google Scholar 

  5. Paterson R (1954) Radiotherapy in cancer of the cervix; rising cure rates follow improvement in technique. Acta Radiol Suppl 116:395–404

    Article  PubMed  CAS  Google Scholar 

  6. Yeoh EE, Fraser RJ, McGowan RE et al (2003) Evidence for efficacy without increased toxicity of hypofractionated radiotherapy for prostate carcinoma: early results of a phase III randomized trial. Int J Radiat Oncol Biol Phys 55:943–955

    Article  PubMed  Google Scholar 

  7. Livsey JE, Cowan RA, Wylie JP et al (2003) Hypofractionated conformal radiotherapy in carcinoma of the prostate: five-year outcome analysis. Int J Radiat Oncol Biol Phys 57:1254–1259

    Article  PubMed  Google Scholar 

  8. Leksell L (1951) The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 102:316–319

    PubMed  CAS  Google Scholar 

  9. Macbeth FR, Wheldon TE, Girling DJ et al (1996) Radiation myelopathy: estimates of risk in 1048 patients in three randomized trials of palliative radiotherapy for non-small cell lung cancer. The Medical Research Council Lung Cancer Working Party. Clin Oncol (R Coll Radiol) 8:176–181

    Article  CAS  Google Scholar 

  10. Harrison D, Crennan E, Cruickshank D et al (1988) Hypofractionation reduces the therapeutic ratio in early glottic carcinoma. Int J Radiat Oncol Biol Phys 15:365–372

    Article  PubMed  CAS  Google Scholar 

  11. Ashby MA, Ago CT, Harmer CL (1986) Hypofractionated radiotherapy for sarcomas. Int J Radiat Oncol Biol Phys 12:13–17

    Article  PubMed  CAS  Google Scholar 

  12. Overgaard M, Bentzen SM, Christensen JJ et al (1987) The value of the NSD formula in equation of acute and late radiation complications in normal tissue following 2 and 5 fractions per week in breast cancer patients treated with postmastectomy irradiation. Radiother Oncol 9:1–11

    Article  PubMed  CAS  Google Scholar 

  13. Singh K (1978) Two regimes with the same TDF but differing morbidity used in the treatment of stage III carcinoma of the cervix. Br J Radiol 51:357–362

    Article  PubMed  CAS  Google Scholar 

  14. Bentzen SM, Constine LS, Deasy JO et al (2010) Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 76:S3–S9

    Article  PubMed  Google Scholar 

  15. Thames HD Jr, Withers HR, Peters LJ et al (1982) Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys 8:219–226

    Article  PubMed  Google Scholar 

  16. Withers HR, Taylor JM, Maciejewski B (1988) The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol 27:131–146

    Article  PubMed  CAS  Google Scholar 

  17. Fowler JF, Ritter MA, Chappell RJ et al (2003) What hypofractionated protocols should be tested for prostate cancer? Int J Radiat Oncol Biol Phys 56:1093–1104

    Article  PubMed  Google Scholar 

  18. Petersen C, Zips D, Krause M et al (2001) Repopulation of FaDu human squamous cell carcinoma during fractionated radiotherapy correlates with reoxygenation. Int J Radiat Oncol Biol Phys 51:483–493

    Article  PubMed  CAS  Google Scholar 

  19. Nakamura K, Brahme A (1999) Evaluation of fractionation regimens in stereotactic radiotherapy using a mathematical model of repopulation and reoxygenation. Radiat Med 17:219–225

    PubMed  CAS  Google Scholar 

  20. Haustermans KM, Hofland I, Van Poppel H et al (1997) Cell kinetic measurements in prostate cancer. Int J Radiat Oncol Biol Phys 37:1067–1070

    Article  PubMed  CAS  Google Scholar 

  21. Pollack A, Zagars GK, Kavadi VS (1994) Prostate specific antigen doubling time and disease relapse after radiotherapy for prostate cancer. Cancer 74:670–678

    Article  PubMed  CAS  Google Scholar 

  22. Dasu A (2007) Is the alpha/beta value for prostate tumours low enough to be safely used in clinical trials? Clin Oncol (R Coll Radiol) 19:289–301

    Article  CAS  Google Scholar 

  23. Brenner DJ, Hall EJ (1999) Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys 43:1095–1101

    Article  PubMed  CAS  Google Scholar 

  24. Fowler J, Chappell R, Ritter M (2001) Is alpha/beta for prostate tumors really low? Int J Radiat Oncol Biol Phys 50:1021–1031

    Article  PubMed  CAS  Google Scholar 

  25. King CR, Mayo CS (2000) Is the prostrate alpha/beta ratio of 1.5 from Brenner & Hall a modeling artifact. Int J Radiat Oncol Biol Phys 47:536–539

    Article  PubMed  CAS  Google Scholar 

  26. Carlone M, Wilkins D, Nyiri B et al (2003) Comparison of alpha/beta estimates from homogeneous (individual) and heterogeneous (population) tumor control models for early stage prostate cancer. Med Phys 30:2832–2848

    Article  PubMed  Google Scholar 

  27. Moiseenko V (2004) Effect of heterogeneity in radiosensitivity on LQ based isoeffect formalism for low alpha/beta cancers. Acta Oncol 43:499–502

    Article  PubMed  Google Scholar 

  28. Lindsay PE, Moiseenko VV, Van Dyk J et al (2003) The influence of brachytherapy dose heterogeneity on estimates of alpha/beta for prostate cancer. Phys Med Biol 48:507–522

    Article  PubMed  CAS  Google Scholar 

  29. Wang JZ, Guerrero M, Li XA (2003) How low is the alpha/beta ratio for prostate cancer? Int J Radiat Oncol Biol Phys 55:194–203

    Article  PubMed  Google Scholar 

  30. Dasu A, Fowler JF (2005) Comments on “Comparison of in vitro and in vivo alpha/beta ratios for prostate cancer”. Phys Med Biol 50:L1–L4; author reply L5–L8

    Article  PubMed  Google Scholar 

  31. Brenner DJ, Martinez AA, Edmundson GK et al (2002) Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys 52:6–13

    Article  PubMed  Google Scholar 

  32. Williams SG, Taylor JM, Liu N et al (2007) Use of individual fraction size data from 3756 patients to directly determine the alpha/beta ratio of prostate cancer. Int J Radiat Oncol Biol Phys 68:24–33

    Article  PubMed  Google Scholar 

  33. Nahum AE, Movsas B, Horwitz EM et al (2003) Incorporating clinical measurements of hypoxia into tumor local control modeling of prostate cancer: implications for the alpha/beta ratio. Int J Radiat Oncol Biol Phys 57:391–401

    Article  PubMed  Google Scholar 

  34. Carlson DJ, Stewart RD, Li XA et al (2004) Comparison of in vitro and in vivo alpha/beta ratios for prostate cancer. Phys Med Biol 49:4477–4491

    Article  PubMed  Google Scholar 

  35. Lloyd-Davies RW, Collins CD, Swan AV (1990) Carcinoma of prostate treated by radical external beam radiotherapy using hypofractionation. Twenty-two years’ experience (1962–1984). Urology 36:107–111

    Article  PubMed  CAS  Google Scholar 

  36. Kupelian PA, Willoughby TR, Reddy CA et al (2007) Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: Cleveland Clinic experience. Int J Radiat Oncol Biol Phys 68:1424–1430

    Article  PubMed  Google Scholar 

  37. Yeoh EE, Holloway RH, Fraser RJ et al (2006) Hypofractionated versus conventionally fractionated radiation therapy for prostate carcinoma: updated results of a phase III randomized trial. Int J Radiat Oncol Biol Phys 66:1072–1083

    Article  PubMed  Google Scholar 

  38. Akimoto T, Muramatsu H, Takahashi M et al (2004) Rectal bleeding after hypofractionated radiotherapy for prostate cancer: correlation between clinical and dosimetric parameters and the incidence of grade 2 or worse rectal bleeding. Int J Radiat Oncol Biol Phys 60:1033–1039

    Article  PubMed  Google Scholar 

  39. Lukka H, Hayter C, Julian JA et al (2005) Randomized trial comparing two fractionation schedules for patients with localized prostate cancer. J Clin Oncol 23:6132–6138

    Article  PubMed  Google Scholar 

  40. Valdagni R, Italia C, Montanaro P et al (2005) Is the alpha-beta ratio of prostate cancer really low? A prospective, non-randomized trial comparing standard and hyperfractionated conformal radiation therapy. Radiother Oncol 75:74–82

    Article  PubMed  Google Scholar 

  41. Bentzen SM, Ritter MA (2005) The alpha/beta ratio for prostate cancer: what is it, really? Radiother Oncol 76:1–3

    Article  PubMed  Google Scholar 

  42. Dubray BM, Thames HD (1994) Chronic radiation damage in the rat rectum: an analysis of the influences of fractionation, time and volume. Radiother Oncol 33:41–47

    Article  PubMed  CAS  Google Scholar 

  43. Gasinska A, Dubray B, Hill SA et al (1993) Early and late injuries in mouse rectum after fractionated X-ray and neutron irradiation. Radiother Oncol 26:244–253

    Article  PubMed  CAS  Google Scholar 

  44. van der Kogel AJ, Jarrett KA, Paciotti MA et al (1988) Radiation tolerance of the rat rectum to fractionated X-rays and pi-mesons. Radiother Oncol 12:225–232

    Article  PubMed  Google Scholar 

  45. Brenner DJ (2004) Fractionation and late rectal toxicity. Int J Radiat Oncol Biol Phys 60:1013–1015

    Article  PubMed  Google Scholar 

  46. Jereczek-Fossa BA, Vavassori A, Fodor C et al (2008) Dose escalation for prostate cancer using the three-dimensional conformal dynamic arc technique: analysis of 542 consecutive patients. Int J Radiat Oncol Biol Phys 71:784–794

    Article  PubMed  Google Scholar 

  47. Dorr W, Hendry JH (2001) Consequential late effects in normal tissues. Radiother Oncol 61:223–231

    Article  PubMed  CAS  Google Scholar 

  48. Wang CJ, Leung SW, Chen HC et al (1998) The correlation of acute toxicity and late rectal injury in radiotherapy for cervical carcinoma: evidence suggestive of consequential late effect (CQLE). Int J Radiat Oncol Biol Phys 40:85–91

    Article  PubMed  CAS  Google Scholar 

  49. Fiorino C, Sanguineti G, Valdagni R (2005) Fractionation and late rectal toxicity: no reliable estimates of alpha/beta value for rectum can be derived from studies where different volumes of rectum are irradiated at different dose levels: in regard to Brenner (Int J Radiat Oncol Biol Phys 2004;60:1013–1015.). Int J Radiat Oncol Biol Phys 62:289–290; author reply 290–281

    Article  PubMed  Google Scholar 

  50. Deore SM, Shrivastava SK, Supe SJ et al (1993) Alpha/beta value and importance of dose per fraction for the late rectal and recto-sigmoid complications. Strahlenther Onkol 169:521–526

    PubMed  CAS  Google Scholar 

  51. Marzi S, Saracino B, Petrongari MG et al (2009) Modeling of alpha/beta for late rectal toxicity from a randomized phase II study: conventional versus hypofractionated scheme for localized prostate cancer. J Exp Clin Cancer Res 28:117

    Article  PubMed  Google Scholar 

  52. Guerrero M, Li XA (2006) Halftime for repair of sublethal damage in normal bladder and rectum: an analysis of clinical data from cervix brachytherapy. Phys Med Biol 51:4063–4071

    Article  PubMed  Google Scholar 

  53. Akimoto T, Ito K, Saitoh J et al (2005) Acute genitourinary toxicity after high-dose-rate (HDR) brachytherapy combined with hypofractionated external-beam radiation therapy for localized prostate cancer: correlation between the urethral dose in HDR brachytherapy and the severity of acute genitourinary toxicity. Int J Radiat Oncol Biol Phys 63:463–471

    Article  PubMed  Google Scholar 

  54. Dale RG (1985) The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 58:515–528

    Article  PubMed  CAS  Google Scholar 

  55. Mohan DS, Kupelian PA, Willoughby TR (2000) Short-course intensity-modulated radiotherapy for localized prostate cancer with daily transabdominal ultrasound localization of the prostate gland. Int J Radiat Oncol Biol Phys 46:575–580

    Article  PubMed  CAS  Google Scholar 

  56. Pollack A, Hanlon AL, Horwitz EM et al (2006) Dosimetry and preliminary acute toxicity in the first 100 men treated for prostate cancer on a randomized hypofractionation dose escalation trial. Int J Radiat Oncol Biol Phys 64:518–526

    Article  PubMed  Google Scholar 

  57. Arcangeli G, Saracino B, Gomellini S et al (2010) A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int J Radiat Oncol Biol Phys 78:11–18

    Article  PubMed  Google Scholar 

  58. Smit WG, Helle PA, van Putten WL et al (1990) Late radiation damage in prostate cancer patients treated by high dose external radiotherapy in relation to rectal dose. Int J Radiat Oncol Biol Phys 18:23–29

    Article  PubMed  CAS  Google Scholar 

  59. Schultheiss TE, Hanks GE, Hunt MA et al (1995) Incidence of and factors related to late complications in conformal and conventional radiation treatment of cancer of the prostate. Int J Radiat Oncol Biol Phys 32:643–649

    Article  PubMed  CAS  Google Scholar 

  60. Pavy JJ, Denekamp J, Letschert J et al (1995) EORTC Late Effects Working Group. Late effects toxicity scoring: the SOMA scale. Radiother Oncol 35:11–15

    Article  PubMed  CAS  Google Scholar 

  61. Brundage MD, Pater JL, Zee B (1993) Assessing the reliability of two toxicity scales: implications for interpreting toxicity data. J Natl Cancer Inst 85:1138–1148

    Article  PubMed  CAS  Google Scholar 

  62. Leborgne F, Fowler J (2009) Late outcomes following hypofractionated conformal radiotherapy vs. standard fractionation for localized prostate cancer: a nonrandomized contemporary comparison. Int J Radiat Oncol Biol Phys 74:1441–1446

    Article  PubMed  Google Scholar 

  63. Lim TS, Cheung PC, Loblaw DA et al (2008) Hypofractionated accelerated radiotherapy using concomitant intensity-modulated radiotherapy boost technique for localized high-risk prostate cancer: acute toxicity results. Int J Radiat Oncol Biol Phys 72:85–92

    Article  PubMed  Google Scholar 

  64. Arcangeli S, Strigari L, Soete G et al (2009) Clinical and dosimetric predictors of acute toxicity after a 4-week hypofractionated external beam radiotherapy regimen for prostate cancer: results from a multicentric prospective trial. Int J Radiat Oncol Biol Phys 73:39–45

    Article  PubMed  Google Scholar 

  65. Coote JH, Wylie JP, Cowan RA et al (2009) Hypofractionated intensity-modulated radiotherapy for carcinoma of the prostate: analysis of toxicity. Int J Radiat Oncol Biol Phys 74:1121–1127

    Article  PubMed  Google Scholar 

  66. Di Muzio N, Fiorino C, Cozzarini C et al (2009) Phase I-II study of hypofractionated simultaneous integrated boost with tomotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 74:392–398

    Article  PubMed  Google Scholar 

  67. Faria SL, Souhami L, Joshua B et al (2008) Reporting late rectal toxicity in prostate cancer patients treated with curative radiation treatment. Int J Radiat Oncol Biol Phys 72:777–781

    Article  PubMed  Google Scholar 

  68. Higgins GS, McLaren DB, Kerr GR et al (2006) Outcome analysis of 300 prostate cancer patients treated with neoadjuvant androgen deprivation and hypofractionated radiotherapy. Int J Radiat Oncol Biol Phys 65:982–989

    Article  PubMed  Google Scholar 

  69. Martin JM, Rosewall T, Bayley A et al (2007) Phase II trial of hypofractionated image-guided intensity-modulated radiotherapy for localized prostate adenocarcinoma. Int J Radiat Oncol Biol Phys 69:1084–1089

    Article  PubMed  Google Scholar 

  70. Pervez N, Small C, MacKenzie M et al (2010) Acute toxicity in high-risk prostate cancer patients treated with androgen suppression and hypofractionated intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 76:57–64

    Article  PubMed  CAS  Google Scholar 

  71. Zilli T, Rouzaud M, Jorcano S et al (2010) Dose escalation study with two different hypofractionated intensity modulated radiotherapy techniques for localized prostate cancer: acute toxicity. Technol Cancer Res Treat 9:263–270

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Macias Hernandez M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hernandez, V.M. (2012). Hypofractionated Radiation Therapy in Prostate Cancer: Rationale, History, and Outcomes. In: Ponsky, L., Fuller, D., Meier, R., Ma, C. (eds) Robotic Radiosurgery. Treating Prostate Cancer and Related Genitourinary Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11495-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11495-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11494-6

  • Online ISBN: 978-3-642-11495-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics