Skip to main content

Insecticidal and Nematicidal Metabolites from Fungi

  • Chapter
  • First Online:
Book cover Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

This chapter is an update of the chapter which appeared in The Mycota, Vol. X in 2002. Not many novel compounds with nematicidal and insecticidal activities have been described in the meantime. Therefore, we have shifted focus from the chemical diversity of fungal metabolites and their producing organisms towards novel insights into the mode of action and the ecological significance of the compounds, e.g. their role for insect pathogens during colonization of the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Imai T, Ishii N, Usui M, Okuda T, Oki T (2005) Quinolactacide, a new quinolone insecticide from Penicillium citrinum. Biosci Biotechnol Biochem 69:1202–1205

    Article  CAS  Google Scholar 

  • Abe M, Imai T, Ishii N, Usui M (2006) Synthesis of quinolactacide via an acyl migration reaction and dehydrogenation with manganese dioxide, and its insecticidal activities. Biosci Biotechnol Biochem 70:303–306

    Article  CAS  Google Scholar 

  • Amiri-Besheli B, Khambay B, Cameron S, Deadman ML, Butt TM (2000) Inter- and intra-specific variation in destruxin production by insect pathogenic Metarhizium spp., and its significance to pathogenesis. Mycol Res 104:447–452

    Article  CAS  Google Scholar 

  • Anke H, Antelo L (2009) Cyclic peptides and depsipeptides from fungi. In: Anke T, Weber D (eds) Physiology and genetics. Mycota XV. Springer, Berlin Heidelberg New York, pp 273–296

    Chapter  Google Scholar 

  • Anke H, Sterner O (2002) Insecticidal and nematicial metabolites from fungi. In: Osiewacz HD (ed) Industrial applications. Mycota X. Springer, Berlin Heidelberg New York, pp 109–127

    Google Scholar 

  • Aoyagi A, Yano T, Kozuma S, Takatsu T (2007) Pleofungins, novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899. J Antibiot 60:143–152

    Article  CAS  Google Scholar 

  • Arai N, Shiomi K, Iwai Y, Omura S (2000) Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. II. Isolation, physico-chemical properties, and structure elucidation. J Antibiot 53:609–614

    Article  CAS  Google Scholar 

  • Arai T, Mikami Y, Fukushima K, Utsumi T, Yazawa K (1973) A new antibiotic, leucinostatin, derived from Penicillium lilacinum. J Antibiot 26:157–161

    Article  CAS  Google Scholar 

  • Bandani AR, Khambay BPS, Faull JL, Newton R, Deadman M, Butt TM (2000) Production of efrapeptins by Tolypocladium species and evaluation of their insecticidal and antimicrobial properties. Mycol Res 104:537–544

    Article  CAS  Google Scholar 

  • Bandani AR, Amiri B, Butt TM, Gordon-Weeks R (2001) Effects of efrapeptin and destruxin, metabolites of entomogenous fungi, on the hydrolytic activity of a vacuolar type ATPase identified on the brush border membrane vesicles of Galleria mellonella midgut and on plant membrane bound hydrolytic enzymes. Biochim Biophys Acta 1510:367–377

    Article  CAS  Google Scholar 

  • Belofsky G N, Gloer JB, Wicklow DT, Dowd PF (1998) Shearamide A: a new cyclic peptide from the ascostromata of Eupenicillium shearii. Tetrahed Lett 39:5497–5500

    Article  CAS  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  Google Scholar 

  • Boros C, Smith CJ, Vasina Y, Che Y, Dix AB, Darveaux B, Pearce C (2006) Isolation and identification of the icosalides – cyclic peptolides with selective antibiotic and cytotoxic activities. J Antibiot 59:486–494

    Article  CAS  Google Scholar 

  • Boudart G (1989) Antibacterial activity of sirodesmin PL phytotoxin: application to the selection of phytoxin-deficient mutants. Appl Enivron Microbiol 55:1555–1559

    CAS  Google Scholar 

  • Büchel, E, Martini U, Mayer A, Anke H, Sterner O (1998) Omphalotins B, C, and D, nematicidal cyclopeptides from Omphalotus olearius. Absolute configuaration of omphalotin A. Tetrahedron 54:5345–5352

    Article  Google Scholar 

  • Buckingham J (ed) (2008) Dictionary of natural products on DVD, ver 17.1. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Calo L, Fornelli F, Nenna S, Tursi A, Caiaffa MF, Macchia L (2003) Beauvericin cytotoxicity to the invertebrate cell line SF-9. J Appl Genet 44:515–520

    Google Scholar 

  • Capon RJ, Skene C, Stewart M, Ford J, O’Hair RAJ, Williams L, Lacey E, Gill JH, Heiland K, Friedel T (2003) Aspergillicins A-E: five novel depsipeptides from the marine-derived fungus Aspergillus carneus. Org Biomol Chem 1:1856–1862

    Article  CAS  Google Scholar 

  • Che Y, Swenson DC, Gloer JB, Koster B, Malloch D (2001) Pseudodestruxins A and B: new cycllic depsipeptides from the coprophilous fungus Nigrosabulum globosum. J Nat Prod 64:555–558

    Article  CAS  Google Scholar 

  • Chen G, Lin Y, Wen L, Vrijmoed LLP, Jones EBG (2003) Two new metabolites of a marine endophytic fungus (No. 1893) from an estuarine mangrove on the South China Sea coast. Tetrahedron 59:4907–4909

    Article  CAS  Google Scholar 

  • Chen SY, Dickson DW, Mitchell DJ (2000) Viability of Heterodera glycines exposed to fungal filtrates. J Nematol 32:190–197

    CAS  Google Scholar 

  • Conder GA, Johnson SS, Nowakowski DS, Blake TE, Dutton FE, Nelson SJ, Thomas EM, Davis JP, Thompson DP (1995) Anthelmintic profile of the cyclodepsipeptide PF1022A in in vitro and in vivo models. J Antibiot 48:820–823

    Article  CAS  Google Scholar 

  • Dyker H, Harder A, Scherkenbeck J (2004) Chimeric cyclodepsipeptides as mimetics for the anthelmintic PF1022A. Biorg Med Chem Lett 14: 6129–6130

    Article  CAS  Google Scholar 

  • Elbert A, Nauen R, McCaffery A (2007) IRAC, resistance and mode of action classification of insecticides. In: Krämer W, Schirmer U (eds) Modern crop protection compounds. Wiley-VCH, Weinheim, pp 753–771

    Chapter  Google Scholar 

  • Elliott CE, Gardiner DM, Thoma G, Cozijnsen A, van de Wouw A, Howlett BJ (2007) Production of the toxin sirodesmin PL by Leptosphaeria maculans during infection of Brassica napus. Mol Plant Pathol 8:791–802

    Article  CAS  Google Scholar 

  • Feifel SC, Schmiederer T, Hornbogen T, Berg H, Süssmuth RD, Zocher R (2007) In vitro synthesis of new enniatins: Probing the α-D-hydroxy carboxylic acid binding pocket of the multienzyme enniatin synthetase. ChemBioChem 8:1767–1770

    Article  CAS  Google Scholar 

  • Fornelli F, Minervini F, Logrieco A (2004) Cytotoxicity of fungal metabolites to lepidopteran (Spodoptera frugiperda) cell line (SF9). J Invert Pathol 85:74–79

    Article  CAS  Google Scholar 

  • Fredenhagen A, Molleyres LP, Böhlendorf B, Laue G (2006) Structure determination of neofrapeptins A to N: peptides with insecticidal activity produced by the fungus Geotrichum candidum. J Antibiot 59:267–280

    Article  CAS  Google Scholar 

  • Glinski M, Hornbogen T, Zocher R (2001) Enzymatic synthesis of fungal N-methylated cyclopeptides and depsipeptides. In: Kirst H, Yeh WK, Zmijewski M (eds) Enzyme technologies for pharmaceutical and biotechnological applications. Dekker, New York, pp 471–497

    Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hayashi H, Matsumoto H, Akiyama K (2004) New insecticidal compounds, communesins C, D, and E, from Penicillium expansum Link MK-57. Biosci Biotechnol Biochem 68:753–756

    Article  CAS  Google Scholar 

  • He J, Lion U, Sattler I, Gollmic FA, Grabley S, Cai J, Meiners M, Schünke H, Schaumann K, Dechert U, Kron M (2005) Diastereomeric quinolinone alkaloids from the marine-derived fungus Penicllium janczewskii. J Nat Prod 68:1397–1399

    Article  CAS  Google Scholar 

  • Houston DR, Shiomi K, Arai N, Omura S, Peter MG, Turberg A, Synstad B, Eijsink VG, van Aalten DMF (2002) High-resolution structures of a chitinase complex with natural product cyclopentapeptide inhibitors: mimicry of carbohydrate substrate. Proc Natl Acad Sci USA 99:9127–9132

    Article  CAS  Google Scholar 

  • Huang H, She Z, Lin Y, Vrijmoed LLP, Lin W (2007) Cyclic peptides from an endophytic fungus obtained from a Mangrove leaf (Kandelia candel). J Nat Prod 70:1696–1699

    Article  CAS  Google Scholar 

  • Isaka M, Kittakoop P, Kirtikara K, Hywel-Jones NI, Thebtaranonth Y (2005a) Bioactive substances from insect pathogenic fungi. Acc Chem Res 38:813–823

    Article  CAS  Google Scholar 

  • Isaka M, Palasarn S, Rachtawee P, Vimuttipong S, Kongsaeree P (2005b) Unique diketopiperazine dimers from the insect pathogenic fungus Verticillium hemipterigenum BCC 1449. Org Lett 7:2257–2260

    Article  CAS  Google Scholar 

  • Isaka M, Palasarn S, Kocharin K, Hywel-Jones NI (2007) Comparison of the bioactive secondary metabolites from the scale insect pathogens, anamorph Paecilomyces cinnamomeus, and teleomorph Torrubiella luteorostrata. J Antibiot 60:577–581

    Article  CAS  Google Scholar 

  • Ishiyama A, Otoguro K, Iwatsuki M, Namatame M, Nishihara A, Nonaka K, Kinoshita Y, Takahashi Y, Masuma R, shiomi K, Yamada H, Omura S (2009) In vitro and in vivo antitrypanasomal activities of three peptide antibiotics: leucinostatin A and B, alamethicin I and tsushimycin. J Antibiot 62:303–308

    Article  CAS  Google Scholar 

  • Jegorov A, Paizs B, Žabka M, Kuzma M, Havlièek V, Giannakopulos AE, Derrick PJ (2003) Profiling of cyclic hexadepsipeptides roseotoxins synthesised in vitro: a combined tandem mass spectrometry and quantum chemical study. Eur J Mass Spectrom 9:105–116

    Article  CAS  Google Scholar 

  • Jegorov A, Paizs B, Kuzma M, Zabka M, Landa Z, Sulc M, Barrow MP, Havlicek V (2004) Extraribosomal cyclic tetradepsipeptides beauverolides: profiling and modeling the fragmentation pathways. J Mass Spectrom 39:949–969

    Article  CAS  Google Scholar 

  • Kershaw M, Moorhouse ER, Bateman R; Reynolds SE, Charnley AK (1999) The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. J Invert Pathol 74:213–223

    Article  CAS  Google Scholar 

  • Khachatourians GG, Qazi SS (2008) Entomopathogenic fungi: biochemistry and molecular biology. In: Brakhage AA, Zipfel PF (eds) Human and animal relationship, 2nd edn. Mycota VI. Springer, Berlin Heidelberg New York, pp 33–61

    Chapter  Google Scholar 

  • Köpcke B, Johansson M, Sterner O, Anke H (2002a) Biologically active secondary metabolites from the ascomycete A111-95. 1. Production, isolation and biological activities. J Antibiot 55:36–40

    Article  Google Scholar 

  • Köpcke B, Weber RWS, Anke H (2002b) Galiellalactone and its biogenetic precursors as chemotaxonomic markers of the Sacrosomataceae (Ascomyceta). Phytochemistry 60:709–714

    Article  Google Scholar 

  • Krasnoff SB, Reategui RF, Wagenaar MM, Gloer JB, Gibson DM (2005) Cicadapeptins I and II: new Aib-containing peptides from the entomopathogenic fungus Cordyceps heteropoda. J Nat Prod 68:50–55

    Article  CAS  Google Scholar 

  • Krasnoff SB, Keresztes I, Gillilan RE, Szebenyi DME, Donzelli BGG, Vhurchill ACL, Gibson DM (2007) Serinocyclins A and B, cyclic heptapeptides from Metarhizium anisopliae. J Nat Prod 70:1919–1924

    Article  CAS  Google Scholar 

  • Kumazawa S, Kanda M, Utagawa M, Chiba N, Ohtani H, Mikawa T (2003) MK7924, a novel metabolite with nematocidal activity from Coronophora gregaria. J Antibiot 56:652–654

    Article  CAS  Google Scholar 

  • Kusano M, Koshino H, Uzawa J, Fujioka S, Kawano T, Kimura Y (2000) Nematocidal alkaloids and related compounds produced by the fungus Penicllium cf. simplicissium. Biosci Biotechnol Biochem 64:2559–2568

    Article  CAS  Google Scholar 

  • Kuzma M, Jegorov A, Kacer P, Havlicek V (2001) Sequencing of new beauverolides by high-performance liquid chromatography and mass spectrometry. J Mass Spectrometry 36:1108–1115

    Article  CAS  Google Scholar 

  • Laser H, von Boberfeld WO, Wöhler K, Wolf D (2003) Effects of the botanical composition and weather conditions on mycotoxins in winter forage from grassland. Mycotoxicol Res 19:87–90

    Article  Google Scholar 

  • Leistner E, Steiner U (2009) Fungal origin of ergoline alkaloids present in dicotyledonous plants (Convolvulaceae) In: Anke T and Weber D (eds) Physiology and genetics. Mycota XV. Springer, Berlin Heidelberg New York, pp 197–208

    Chapter  Google Scholar 

  • Liermann JC, Kolshorn H, Antelo L, Hof C, Anke H, Opatz T (2009) Omphalotins E-I, five oxidatively modified nematicidal cyclopeptides from Omphalotus olearius. Eur J Org Chem 2009:1256–1262

    Article  Google Scholar 

  • Lira SP, Vita-Marques AM, Seleghim MHR, Bugni TS, LaBarbera DV, Sette LD, Sponchiado SRP, Ireland CM, Berlinck RGS (2006) New destruxins from the marine-derived fungus Beauveria felina. J Antibiot 59:553–563

    Article  CAS  Google Scholar 

  • López-Gresa MP, González MC, Ciavatta L, Ayala I, Moya P, Primo J; (2006) Insecticidal activity of paraherquamides, including paraherquamide H and paraherquamide I, two new alkaloids isolated from Penicillium cluniae. J Agric Food Chem 54:2921–2925

    Article  Google Scholar 

  • Matsuda D, Namatame I, Tomoda H, Kobayashi S, Zocher R, Kleinkauf H, Omura S (2004) New beauverolides produced by amino acid-supplemented fermentation of Beauveria sp. FO-6979. J Antibiot 57:1–9

    Article  CAS  Google Scholar 

  • Mayer A, Kilian M, Hoster B, Sterner O, Anke H (1999) In vitro and in vivo nematicidal activities of the cyclic dodecapeptide omphalotin A. Pest Sci 55:27–30

    Article  CAS  Google Scholar 

  • Meyer SLF, Huettel RN, Zhong X, Humber RA, Juba J, Nitao JK (2004) Activity of fungal culture filtrates against soybean cyst nematode and root-knot nematode egg hatch and juvenile motility. Nematology 6:23–32

    Article  Google Scholar 

  • Miyado S, Kawasaki H, Aoyagi K, Yaguchi T, Okada T, Sugiyama J (2000) Taxonomic position of the fungus producing the anthelmintic PF1022 based on the 18S rRNA gene base sequence. Nippon Kingakukai Kaiho 41:183–188

    Google Scholar 

  • Mohanty SS, Prakash S (2008) Effects of culture media on larvicidal property of secondary metabolites of mosquito pathogenic fungus Chrysosporium lobatum (Moniliales: Moniliaceae) Acta Trop 109:50–54

    Article  Google Scholar 

  • Monma S, Sunazuka T, Nagai K, Arai T, Shiomi K, Matsui R, Mura S (2006) Verticilide: elucidation of absolute configuration and total synthesis. Org Lett 8:5601–5604

    Article  CAS  Google Scholar 

  • Muroi MN, Kaneko N, Suzuki K, Nishio T, Oku T, Sato T, Takatsuki A (1996) Efrapeptins block exocytic but not endocytic trafficking of proteins. Biochim Biophys Res Commun 227:800–809

    Article  CAS  Google Scholar 

  • Nagamitsu T, Takano D, Shiomi K, Ui H, Yamaguchi Y, Masuma R, Harigaya Y, Kuwajima I, Omura S (2003) Total synthesis of nafuredin-γ, a γ-lactone related to nafuredin with selective activity against NADH-fumarate reductase. Tetrahedron Lett 44:6441–6444

    Article  CAS  Google Scholar 

  • Nagaraj G, Uma MV, Shivayogi MS, Balaram H (2001) Antimalarial activities of peptide antibiotics isolated from fungi. Antimicrob Agents Chemother 45:145–149

    Article  CAS  Google Scholar 

  • Nakahara S, Kusano M, Fujioka S, Shimada A, Kimura Y (2004) Penipratynolene, a novel nematicide from Penicillium bilaiae Chalabuda. Biosci Biotechnol Biochem 68:257–259

    Article  CAS  Google Scholar 

  • Namatame I, Zomoda H, Ishibashi S, Omura S (2004) Antiatherogenic activity of fungal beauverolides, inhibitors of lipid droplet accumulation in macrophages. Proc Natl Acad Sci USA 101:737–742

    Article  CAS  Google Scholar 

  • Nilanonta C, Isaka M, Chanphen R, Thongorn N, Tanticharoen M, Thebtaranonth Y (2003) Unusual enniatins produced by the insect pathogenic fungus Verticillium hemipterigenum: isolation and studies on precursor-directed biosynthesis. Tetrahedron 59:1015–1020

    Article  CAS  Google Scholar 

  • Ohshiro T, Rudel LL, Omura S, Tomoda H (2007) Selectivity of microbial acyl-CoA:cholesterol acyltransferase inhibitors towards isoenzymes. J Antibiot 60:43–51

    Article  CAS  Google Scholar 

  • Omura S, Miyadera H, Ui H, Shiomi K, Yamaguchi Y, Masuma R, Nagamitsu T, Takano D, Sunazuka T, Harder A, Kölbl H, Namikoshi M, Miyoshi H, Sakamoto K, Kita K (2001) An anthelmintic compound, nafuredin, shows selelctive inhibition of complex I in helminth mitochondria. Proc Natl Acad Sci USA 98:60–62

    Article  CAS  Google Scholar 

  • Ondeyka JG, Dahl-Roshak AM, Tkacz JS, Zink DL, Zakson-Aiken M, shoop WL, Goetz MA, Singh SB (2002) Nodulisporic acid B, B1, and B2: A series of 1′-deoxy-nodulisporic acids from Nodulisporium sp. Bioorg Med Chem Lett 12:2941–2944

    Article  CAS  Google Scholar 

  • Ondeyka JG, Byrne K, Vesey D, Zink DL, Shoop WL, Goetz MA, Singh SB (2003) Nodulisporic acids C, C1, and C2: a series of D-ring-opened nodulisporic acids from the fungus Nodulisporium sp. J Nat Prod 66:121–124

    Article  CAS  Google Scholar 

  • Panaccione DC, Cipoletti JR, Sedlock AB, Blemings KP, Schradl CL, Machado C, Seidel GE (2006) Effects of ergot alkaloids on food preference and satiety in rabbits, as assessed with gene-knockout endophytes in perennial ryegrass (Lolium perenne). J Agric Food Chem 54:4582–4587

    Article  CAS  Google Scholar 

  • Park JO, Hargreaves JR, McConville EJ, Stirling GR, Ghisalberti EL, Sivasithamparam (2004) Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Lett Appl Microbiol 38:271–276

    Article  CAS  Google Scholar 

  • Pedras MSC, Zaharia LI, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation and biological activity. Phytochemistry 59:579–596

    Article  CAS  Google Scholar 

  • Rouxel T, Chupeau Y, Fritz R, Kollmann A, Bousquet J-F (1988) Biological effects of sirodesmin PL, a phytotoxin produced by Leptosphaeria maculans. Plant Sci 57:45–53

    Article  CAS  Google Scholar 

  • Saeger B, Schmitt-Wrede HP, Dehnhardt M, Benten WP, Krucken J, Harder A, Samson-Himmelstjerna G von, Wiegand H, Wunderlich F (2001) Latrophilin-like receptor from the parasitic nematode Haemonchus contortus as target for the anthelmintic depsipeptide PF1022A. FASEB J 15:1332–1334

    CAS  Google Scholar 

  • Samson-Himmelstjerna G von, Harder A, Sangster NC, Coles GC (2005) Efficacy of two cyclooctadepsipeptides, PF022A and emodepside, against anthelmintic-resistant nematodes in sheep and cattle. Parasitology 130:343–347

    Article  Google Scholar 

  • Sarabia F, Chammaa S, Sánchez Ruiz A, Martín Ortiz L, López Herrera FJ (2004) Chemistry and biology of cyclic depsipeptides of medicinal and biological interest. Curr Med Chem 11:1309–1332

    Article  CAS  Google Scholar 

  • Sasaki T, Takagi M, Yaguchi T, Miyado S, Okada T, Koyama M (1992) A new anthelmintic cyclodepsipeptide, PF1022. J Antibiot 45:692–697

    Article  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  Google Scholar 

  • Scherkenbeck J, Jeschke P, Harder A (2002) PF1022A and related cyclodepsipeptides – a novel class of anthelmintics. Curr Top Med Chem 7:759–777

    Article  Google Scholar 

  • Schwarz M, Köpcke B, Weber RWS, Sterner O, Anke H (2004) 3-Hydroxypropionic acid a nematicidal principle of endophytic fungi. Phytochemistry 65:2239–2245

    Article  CAS  Google Scholar 

  • Seto Y, Takahasi K, Matsuura H, Kogami Y, Yada H, Yoshihara T, Nabeta K (2007) Novel cyclic peptide, epichlicin, from the endophytic fungus, Epichloe typhina. Biosci Biotechnol Biochem 71:1470–1475

    Article  CAS  Google Scholar 

  • Shiomi K, Ui H, Suzuki H, Hatano H, Nagamitsu T, Takano D, Miyadera H, Yamashita T, Kita K, Miyoshi H, Harder A, Tomoda H, Ōmura S (2005) A γ-lactone from nafuredin, nafuredin- γ, also inhibits helminth complex I. J Antibiot 58:50–55

    Article  CAS  Google Scholar 

  • Shoop WL, Gregory LM, Zaksonaiken M, Michael BF, Haines HW, Ondeyka JG, Meinke RT, Schmatz DM (2001) Systemic efficacy of nodulisporic acid against fleas on dogs. J Parasitol 87:419–423

    CAS  Google Scholar 

  • Singh SB, Zink DL, Liesch JM, Mosley RT, Dombrowski AW, Bills GF, Darkin-Rattray SJ, Schmatz DM, Goetz MA (2002) Structure and chemistry of apicidins, a class of novel cyclic tetrapeptides without a terminal α-keto epoxide as inhibitors of histone deacetylase with potent antiprotozoal activities. J Org Chem 67:815–825

    Article  CAS  Google Scholar 

  • Singh SB, Ondeyka JG, Jayasuriya H, Zink DL, Ha SN, Dahl-Roshak A, Greene J, Kim JA, Smith MM, Shoop W, Tkacz JS (2004) Nodulisporic acids D-F: structure, biological activities, and biogenetic relationships. J Nat Prod 67:1496–1506

    Article  CAS  Google Scholar 

  • Skrobek A, Butt TM (2005) Toxicity testing of destruxins and crude extracts from the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 251:23–28

    Article  CAS  Google Scholar 

  • Smith AB, Cui H (2003) Indole-diterpene synthetic studies:total synthesis of (-)-21-isopentenylpaxilline. Helv Chim Acta 86:3908–3938

    Article  CAS  Google Scholar 

  • Supothina S, Isaka M, Kirtikara K, Tanticharoen M, Thebtaranonth Y. (2004) Enniatin production by the entomopathogenic fungus Verticillium hemipterigenum BCC 1449. J Antibiot 57:732–738

    Article  CAS  Google Scholar 

  • Tang CY, Chen YW, Jow GM, Chou CJ, Jeng CJ (2005) Beauvericin activates Ca2+−activated Cl currents and induces cell deaths in Xenopus oocytes via influx of extracellular Ca2+. Chem Res Toxicol 18:825–833

    Article  CAS  Google Scholar 

  • Trost BM, Cramer N, Bernsmann H (2007) Concise total synthesis of (±)-marcfortine B. J Am Chem Soc 129:3086–3087

    Article  CAS  Google Scholar 

  • Uchida R, Imasato R, Yamaguchi Y, Masuma R, Shiomi K, Tomoda H, Omura S (2006a) Yaequinolones, new insecticidal antibiotics produced by Penicillium sp. FKI-2140. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 59:646–651

    Article  CAS  Google Scholar 

  • Uchida R, Imasato R, Tomoda H, Omura S (2006b) Yaequinolones, new insecticidal antibiotics produced by Penicillium sp. FKI-2140. II. Structural elucidations. J Antibiot 59:652–658

    Article  CAS  Google Scholar 

  • Vey A, Matha V, Dumas C (2002) Effects of the peptide mycotoxin destruxin E on insect haemocytes and on dynamics and efficiency of the multicellular immune reaction. J Invert Pathol 80:177–187

    Article  CAS  Google Scholar 

  • Whyte AC, Gloer JB, Wicklow DT, Dowd PF (1996) Sclerotiamide: a new member of the paraherquamide class with potent antiinsectan activity from the sclerotia of Aspergillus sclerotiorum. J Nat Prod 59:1093–1095

    Article  CAS  Google Scholar 

  • Williams RM (2002) Total synthesis and biosynthesis of the paraherquamides: an intriguing story of the biological Diels–Alder construction. Chem Pharm Bull 50:711–740

    Article  CAS  Google Scholar 

  • Williams RM, Cao J, Tsujishima H, Cox RJ (2003) Asymmetric, stereocontrolled total synthesis of paraherquamide A. J Am Chem Soc 125:12172–12178

    Article  CAS  Google Scholar 

  • Yasiu H, Hirai K, Yamamoto S, Takao K, Tadano K (2006) Total syntheses of (+)-1893B and its three diastereomers and evaluation of their biological activities. J Antibiot 59:456–463

    Article  Google Scholar 

  • Zimmermann G (2007a) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596

    Article  Google Scholar 

  • Zimmermann G (2007b) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to Dr. L. Antelo for preparing the figures. The work in our laboratory was supported by Bayer AG, BASF SE, the State of Rhineland–Palatinate and the BMBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidrun Anke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anke, H. (2011). Insecticidal and Nematicidal Metabolites from Fungi. In: Hofrichter, M. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11458-8_7

Download citation

Publish with us

Policies and ethics