Skip to main content

Abstract

During the last three decades the Internet has experienced fascinating evolution, both exponential growth in traffic and rapid expansion in topology. The size of the Internet becomes enormous, yet the network is very ‘small’ in the sense that it is extremely efficient to route data packets across the global Internet. This paper provides a brief review on three fundamental properties of the Internet topology at the autonomous systems (AS) level. Firstly the Internet has a power-law degree distribution, which means the majority of nodes on the Internet AS graph have small numbers of links, whereas a few nodes have very large numbers of links. Secondly the Internet exhibits a property called disassortative mixing, which means poorly-connected nodes tend to link with well-connected nodes, and vice versa. Thirdly the best-connected nodes, or the rich nodes, are tightly interconnected with each other forming a rich-club. We explain that it is these structural properties that make the global Internet so ‘small’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quoitin, B., Pelsser, C., Swinnen, L.: Interdomain traffic engineering with BGP. IEEE Communications Magazine 41, 122–128 (2003)

    Article  Google Scholar 

  2. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet - A Statistical Physics Approach. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  4. Mahadevan, P., Krioukov, D., Fomenkov, M., Huffaker, B., Dimitropoulos, X., Claffy, K., Vahdat, A.: The internet AS-level topology: Three data sources and one definitive metric. Computer Comm. Rev. 36, 17–26 (2006)

    Article  Google Scholar 

  5. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power–law relationships of the Internet topology. Computer Comm. Rev. 29, 251–262 (1999)

    Article  MATH  Google Scholar 

  6. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the internet. Phys. Rev. Lett. 87 (2001)

    Google Scholar 

  7. Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003)

    Article  MathSciNet  Google Scholar 

  8. Zhou, S., Mondragón, R.J.: The rich-club phenomenon in the Internet topology. IEEE Comm. Lett. 8, 180–182 (2004)

    Article  Google Scholar 

  9. Krioukov, D., Chung, F., Claffy, K., Fomenkov, M., Vespignani, A., Willinger, W.: The workshop on internet topology (WIT) report. Computer Comm. Rev. 37, 69–73 (2007)

    Article  Google Scholar 

  10. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440 (1998)

    Article  Google Scholar 

  11. Zhou, S., Mondragón, R.: Structural constraints in complex networks. New Journal of Physics 9, 1–11 (2007)

    Article  MathSciNet  Google Scholar 

  12. Vázquez, A., Boguñá, M., Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Topology and correlations in structured scale-free networks. Phys. Rev. E 67 (2003)

    Google Scholar 

  13. Maslov, S., Sneppenb, K., Zaliznyaka, A.: Detection of topological patterns in complex networks: correlation profile of the internet. Physica A 333, 529–540 (2004)

    Article  Google Scholar 

  14. Floyd, S., Kohler, E.: Internet research needs better models. Computer Comm. Rev. 33, 29–34 (2003)

    Article  Google Scholar 

  15. Tangmunarunkit, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: Network topology generators: Degree-based vs. structural. In: Proc. ACM SIGCOMM, pp. 147–159 (2002)

    Google Scholar 

  16. Zhou, S., Mondragón, R.J.: Accurately modelling the Internet topology. Phys. Rev. E 70, 066108 (2004)

    Article  Google Scholar 

  17. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks - From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Zhou, S. (2009). Why the Internet Is So ‘Small’?. In: Mehmood, R., Cerqueira, E., Piesiewicz, R., Chlamtac, I. (eds) Communications Infrastructure. Systems and Applications in Europe. EuropeComm 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11284-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11284-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11283-6

  • Online ISBN: 978-3-642-11284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics