Skip to main content

pin-Diodes

  • Chapter
  • First Online:
Book cover Semiconductor Power Devices

Abstract

Most power diodes are pin-diodes, i.e. they possess a middle region with a much lower doping concentration than the outer p- and n-layers enclosing it. Compared with unipolar devices (see Chap. 6), pin-diodes have the advantage that the on-resistance is strongly reduced by high-level injection in the base region, which is known as conductivity modulation . Hence pin-diodes can be used up to very high blocking voltages. The base region is not intrinsic, as suggested by the name. The intrinsic case – doping in the range of < 1010 cm−3 – would not only be difficult to attain by technology, extremely low doping would cause essential disadvantages in the turn-off behavior and other properties. Power diodes usually have a p+nn+-structure, hence the so-called i-layer is actually an n-layer. Since it is several orders of magnitude lower than the doping of the outer layers, the name pin-diode has become the usual denotation in almost every case

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baburske R, Heinze B, Lutz J, Niedernostheide FJ: “Charge-carrier Plasma Dynamics during the Reverse-recovery Period in p+-n--n+ diodes, IEEE Trans. Electron Devices ED-55 No 8, pp. 2164–2172 (2008)

    Article  Google Scholar 

  2. Baliga BJ, Modern Power Devices, John Wiley & Sons, New York 1987

    Google Scholar 

  3. Baliga BJ: “Power Devices” in S.M. Sze: Modern Semiconductor Device Physics, John Wiley & Sons, New York 1998

    Google Scholar 

  4. Bartsch W, Thomas B, Mitlehner H, Bloecher B, Gediga S: “SiC-Powerdiodes: Design and performance” Proceedings European Conference on Power Electronics and Applications EPE, (2007)

    Google Scholar 

  5. Benda HJ, Spenke E: “Reverse Recovery Process in Silicon Power Rectifiers”, Proceedings of the IEEE, Vol 55 No 8 (1967)

    Google Scholar 

  6. Chen M, Lutz J, Domeij M, Felsl HP, Schulze, HJ: “A novel diode structure with Controlled Injection of Backside Holes (CIBH)”. Proceedings of the ISPSD, Neaples pp. 9–12 (2006)

    Google Scholar 

  7. Cooper RN: “An investigation of recombination in Gold-doped pin rectifiers”, Solid-St. Electron. 26, 217–226 (1983)

    Article  Google Scholar 

  8. Deboy G et al: “Absolute measurement of carrier concentration and temperature gradients in power semiconductor devices by internal IR-Laser deflection”, Microelectronic Engineering 31, 299–307 (1996)

    Article  Google Scholar 

  9. Drücke D, Silber D: “Power Diodes with Active Control of Emitter Efficiency”, Proceedings of the ISPSD, Osaka, pp. 231–234 (2001)

    Google Scholar 

  10. Drücke D: Neue Emitterkonzepte für Hochspannungsschalter und deren Anwendung in der Leistungselektronik, Dissertation, Bremen 2003

    Google Scholar 

  11. Felsl HP, Falck E, Pfaffenlehner M, Lutz J: “The Influence of Bulk Parameters on the Switching Behavior of FWDs for Traction Application”, Proceedings Miel 2004, Niš/Serbia & Montenegro, 2004

    Google Scholar 

  12. Felsl HP, Pfaffenlehner M, Schulze H, Biermann J, Gutt T,. Schulze HJ, Chen M, Lutz J: “The CIBH Diode – Great Improvement for Ruggedness and Softness of High Voltage Diodes” ISPSD 2008, Orlando, Florida, pp. 173–176 (2008)

    Google Scholar 

  13. Hall RN, “Power rectifiers and transistors”, Proc IRE 40, 1512–1518 (1952)

    Article  Google Scholar 

  14. Huang Q: “MOS-Controlled Diode - A New Class of Fast Switching Low Loss Power Diode” VPEC, pp. 97–105 (1994)

    Google Scholar 

  15. Huang Q, Amaratunga GAJ: “MOS Controlled Diodes - A new Power Diode” Solid-St. Electron. 38 No 5, 977–980 (1995)

    Article  Google Scholar 

  16. IXYS data sheet FMD 21-05QC (2000)

    Google Scholar 

  17. Kopta A, Rahimo M: “The Field Charge Extraction (FCE) Diode – A Novel Technology for Soft Recovery High Voltage Diodes” Proc. ISPSD Santa Barbara, pp. 83–86 (2005)

    Google Scholar 

  18. Laska T, Lorenz L, Mauder A: “The Field Stop IGBT Concept with an Optimized Diode”, Proceedings of the 41th PCIM, Nürnberg (2000)

    Google Scholar 

  19. Lutz J, Scheuermann U: “Advantages of the New Controlled Axial Lifetime Diode”, Proceedings oft the 28th PCIM, Nuremberg (1994)

    Google Scholar 

  20. Lutz J, Wintrich A: “The Hybrid Diode - Mode of Operation and Application”, European Power Electronics and Drives Journal Vol. 10 No. 2 (2000)

    Google Scholar 

  21. Lutz J, Mauder A: “Aktuelle Entwicklungen bei Silizium-Leistungs-dioden”, ETG-Fachbericht 88, VDE-Verlag Berlin (2002)

    Google Scholar 

  22. Mourick P, Das Abschaltverhalten von Leistungsdioden, Dissertation, Berlin 1988

    Google Scholar 

  23. Nemoto M et al: “Great Improvement in IGBT Turn-On Characteristics with Trench Oxide PiN Schottky Diode”, Proceedings of the ISPSD, Osaka (2001)

    Google Scholar 

  24. Schlangenotto H, Gerlach W: “On the effective carrier lifetime in psn-rectifiers at high injection levels”, Solid-St. Electron. 12, pp. 267–275 (1969)

    Article  Google Scholar 

  25. Schlangenotto H, Maeder H: “Spatial Composition and Injection Dependence of Recombination in Silicon Power Device Structures”, IEEE Trans. Electron Devices Ed-26, No 3, pp. 191–200 (1979)

    Article  Google Scholar 

  26. Schlangenotto H, Silber D, Zeyfang R: “Halbleiter-Leistungsbauelemente - Untersuchungen zur Physik und Technologie”, Wiss. Ber. AEG-Telefunken 55 Nr. 1–2 (1982)

    Google Scholar 

  27. Schlangenotto H et al, “Improved Recovery of Fast Power Diodes with Self-Adjusting p Emitter Efficiency”, IEEE Electron Dev. Letters Vol. 10. pp. 322 – 324 (1989)

    Article  Google Scholar 

  28. Shimada Y, Kato K, Ikeda S, Yoshida H: “Low input capacitance and low loss VD-MOSFET rectifier element”, IEEE Trans. Electron Devices, Volume 29, Issue 8, pp. 1332–1334 (1982)

    Article  Google Scholar 

  29. Silber D, Novak WD, Wondrak W, Thomas B, Berg H: “Improved Dynamic Properties of GTO-Thyristors and Diodes by Proton Implantation”, IEDM, Washington (1985)

    Google Scholar 

  30. Advanced tcad manual. Synopsys Inc. Mountain View, CA. Available: http://www.synopsys.com (2007)

  31. Sze SM, Physics of Semiconductor Devices. John Wiley & Sons, New York 1981

    Google Scholar 

  32. Wolley ED, Bevaqua SF: “High Speed, Soft Recovery Epitaxial Diodes for Power Inverter Circuits”, IEEE IAS Meeting Digest (1981)

    Google Scholar 

  33. Wondrak W, Boos A, “Helium Implantation for Lifetime Control in Silicon Power Devices,” Proc. of ESSDERC 87, Bologna, pp. 649–652, (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Lutz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lutz, J., Schlangenotto, H., Scheuermann, U., De Doncker, R. (2010). pin-Diodes. In: Semiconductor Power Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11125-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11125-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11124-2

  • Online ISBN: 978-3-642-11125-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics