Skip to main content

Short Introduction to Power Device Technology

  • Chapter
  • First Online:
  • 5956 Accesses

Abstract

In the following some basic aspects of power device production technology will be described. The selection was done with the aim to describe the process steps which are important for the understanding of the power device operation and limitations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. von Ammon W. “Neutron transmutation doped silicon - technological and economic aspects” Nuclear Instruments and Methods in Physics Research B63 pp. 95–100 (1992)

    Google Scholar 

  2. Barthelmeß R, Beuermann M, Winter N: “New Diodes With Pressure Contact For Hard-Switched High Power Converters”, Proceedings of the EPE ‘99, Lausanne (1999)

    Google Scholar 

  3. Benda V, Govar J, Grant DA, Power Semiconductor Devices, John Wiley & Sons, New York 1999

    Google Scholar 

  4. Bleichner H, Jonsson P, Keskitalo N. Nordlander E.: “Temperature and injection dependence of the Shockley–Read–Hall lifetime in electron irradiated n-type silicon”, J. Appl. Phys. 79, 9142 (1996)

    Article  Google Scholar 

  5. Brieger KP, Gerlach W, Pelka J: “Blocking Capability of Planar Devices with Field Limiting Rings”, Sol. State Electron. 26, 739 (1983)

    Article  Google Scholar 

  6. Brotherton SD, Bradley P: “Defect production and lifetime control in electron and ?-irradiated silicon”, Journal of Applied Physics 53 (8) 5720–5732, (1982)

    Article  Google Scholar 

  7. Cooper RN: “An investigation of recombination in Gold-doped pin rectifiers”, Solid-St. Electron., Vol. 26, 217–226 (1983)

    Article  Google Scholar 

  8. Dearnaley G et al, Can. Journ. Phys. 4 S. 587 (1968)

    Google Scholar 

  9. Falck E, Untersuchung der Sperrfähigkeit von Halbleiter-Bauelementen mittels numerischer Simulation, Dissertation, Berlin 1994

    Google Scholar 

  10. Farfield JM, Gokhale BV: “Gold as Recombination Center in Silicon”, Solid St. Electr., Vol 8, pp6 85–691 (1965)

    Article  Google Scholar 

  11. Fuller und Ditzenberger, J. Appl. Phys., Vol. 27, p. 544–553 (1956)

    Article  Google Scholar 

  12. Gerlach W: Thyristoren, Springer Berlin 1979

    Book  Google Scholar 

  13. Guldberg J: “Electron trap annealing in neutron transmutation doped silicon”, Appl. Phys. Lett., 31 (9):578, (1977)

    Article  Google Scholar 

  14. Haas EW.; Schnoller M.S “Phosphorus doping of silicon by means of neutron irradiation ”, IEEE Trans. Electron Devices, vol 23, Issue 8, Pages 803–805 (1976)

    Article  Google Scholar 

  15. Hallén A, Keskitalo N, Masszi F, Nágl V: “Lifetime in proton irradiated silicon”, J. Appl. Phys. 79, p. 3906 (1996)

    Article  Google Scholar 

  16. Hazdra P, Komarnitskyy V: “Local lifetime control in silicon power diode by ion irradiation : introduction and stability of shallow donors”; IET Journal Circuits, Devices & Systems, Volume 1, Issue 5, Page(s):321–326 (2007)

    Article  Google Scholar 

  17. Huntley FA, Willoughby AFW, “The Effect of Dislocation Density on the Diffusion of Gold in Thin Silicon Slices”, J. Electrochem. Soc., Volume 120, Issue 3, pp. 414–422 (March 1973)

    Article  Google Scholar 

  18. Janus HM Malmros O, “Application of thermal neutron irradiation for large scale production of homogeneous phosphorous doping of floatzone silicon”, IEEE Trans. Electron Devices 21, pp. 797–805 (1976)

    Article  Google Scholar 

  19. Kao YC, Wolley ED: “High Voltage Planar pn-Junctions”, IEEE Trans. Electron Devices 55, 1409 (1967)

    Google Scholar 

  20. Krause O, Pichler P, Ryssel H: “Determination of aluminum diffusion parameters in silicon”, Journ. Appl. Phys vol 91, No 9 (2002)

    Google Scholar 

  21. Lark-Horovitz K, “Nuclear-bombarded semi-conductors,’ in Semiconductor Materials, Proc. Conf. Univ. Reading. London: Butterworths, 1951, pp 47–69.

    Google Scholar 

  22. Lutz J: “Axial recombination centre technology for freewheeling diodes” Proceedings of the 7th EPE, Trondheim, 1.502 (1997)

    Google Scholar 

  23. Lutz J, Südkamp W, Gerlach W: “IMPATT Oscillations in Fast Recovery Diodes due to Temporarily Charged Radiation Induced Deep Levels” Solid-St. Electron., Vol 42 No. 6, 931–938 (1998)

    Article  Google Scholar 

  24. Miller MD: “Differences Between Platinum- and Gold-Doped Silicon Power Devices”, IEEE Trans. Electron Devices, Vol. ED-23, No. 12 (1976)

    Google Scholar 

  25. Moll JL, Physics of semiconductors, McGraw Hill, New York, 1964

    MATH  Google Scholar 

  26. Monakhov EV, Avset BS, Hallen A, Svensson BG: “Formation of a double acceptor center during divacancy annealing in low-doped high-purity oxygenated Si,” Phys. Rev. B, 65:233207 (2002)

    Article  Google Scholar 

  27. Niwa F, Misumi T, Yamazaki S, Sugiyama T, Kanata T, Nishiwaki K: “A Study of Correlation between CiOi Defects and Dynamic Avalanche Phenomenon of PiN Diode Using He Ion Irradiation”, Proceedings of the PESC, Rhodos (2008)

    Google Scholar 

  28. Novak WD, Schlangenotto H, Füllmann M: “Improved Switching Behaviour of Fast Power Diodes”, PCIM Europe (1989)

    Google Scholar 

  29. Pichler P, Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon, Springer Wien New York 2004

    Book  Google Scholar 

  30. Ryssel H, Ruge I, Ion Implantation, John Wiley & Sons, New York 1986

    Google Scholar 

  31. Schade K, Halbleitertechnologie Bd 2, VEB Verlag Berlin 1983

    Google Scholar 

  32. Schnöller MS, “Breakdown behaviour of rectifiers and thyristors made from striation-free silicon”, IEEE Trans. Electron Devices ED 21 pp. 313–314 (1974)

    Article  Google Scholar 

  33. Schlangenotto H, Silber D, Zeyfang R: “Halbleiter-Leistungsbauelemente - Untersuchungen zur Physik und Technologie”, Wiss. Ber. AEG-Telefunken 55 Nr. 1–2 (1982)

    Google Scholar 

  34. Schulze HJ, Kuhnert R: “Realization of High Voltage Planar Junction Termination for Power Devices”, Solid-St. Electron., Vol.32, S. 175 (1989)

    Article  Google Scholar 

  35. Siemieniec R, Netzel M, Südkamp W, Lutz J, “Temperature dependent properties of different lifetime killing technologies on example of fast diodes”, IETA2001, Cairo, (2001)

    Google Scholar 

  36. Siemieniec R, Südkamp W, Lutz J: “Determination of parameters of radiation induced traps in silicon”, Solid-St. Electron., Vol 46, 891–901 (2002)

    Article  Google Scholar 

  37. Siemieniec R, Niedernostheide FJ, Schulze HJ, Südkamp W, Kellner-Werdehausen U, Lutz J: “Irradiation-Induced Deep Levels in Silicon for Power Device Tailoring” Journal of the Electrochemical Society, 153 (2) G108–G118 (2006)

    Article  Google Scholar 

  38. Siltronic AG, “FLOAT ZONE SILICON AT SILTRONIC” http://www.siltronic.com/int/media/publication/.../Leaflet_Floatzone_en.pdf (2006)

  39. Stengl R, Gösele U: “Variation of Lateral Doping - a new Concept to Avoid High Voltage Breakdown of Planar Junctions”, IEEE IEDM 85, S.154 (1985)

    Google Scholar 

  40. Südkamp W: DLTS-Untersuchung an tiefen Störstellen zur Einstellung der Trägerlebensdauer in Si-Leistungsbauelementen, Dissertation, Technical University of Berlin, 1994

    Google Scholar 

  41. Sze SM, VLSI Technology, McGrawHill, New York 1988

    Google Scholar 

  42. Tannenbaum M: Uniform n-type silicon, U.S. patent 3076732, filled 1959/12/15

    Google Scholar 

  43. Tannenbaum M, Mills AD, “Preparation of uniform resistivity n-tvpe silicon by nuclear transmutation”, J. Electrochem. SOC., vol. 108, pp. 171–176, (1961)

    Article  Google Scholar 

  44. Vobecký, J.; Hazdra, P: “High-power P-i-N diode with the local lifetimecontrol based on the proximity gettering of platinum” IEEE Electron DeviceLetters, vol 23, Issue 7, pp 392–394 (2002)

    Article  Google Scholar 

  45. Vobecký J, Hazdra, P: “Radiation-Enhanced Diffusion of Palladium for a Local Lifetime Control in Power Devices”, IEEE Trans. Electron Devices, vol 54, Issue 6, pp 1521–1526 (2007)

    Article  Google Scholar 

  46. Vobecký J, Záhlava V, Hemmann K, Arnold M, Rahimo M, “The Radiation Enhanced Diffusion (RED) Diode - Realization of a Large Area p+p-n-n+ Structure with High SOA”, Proceedings of the 21st ISPSD, Barcelona, pp 144–147 (2009)

    Google Scholar 

  47. Wondrak W, Erzeugung von Strahlenschäden in Silizium durch hochenergetische Elektronen und Protonen, Dissertation, Frankfurt 1985

    Google Scholar 

  48. Wondrak W, Boos A, “Helium Implantation for Lifetime Control in Silicon Power Devices,” Proc. of ESSDERC 87, Bologna, pp. 649–652, (1987)

    Google Scholar 

  49. Ziegler JF, Biersack JP, “The Stopping and Range of Ions in Matter”. [Online]. http://www.srim.org/SRIM/SRIMINTRO.htm (accessed 1/4/2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Lutz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lutz, J., Schlangenotto, H., Scheuermann, U., De Doncker, R. (2010). Short Introduction to Power Device Technology. In: Semiconductor Power Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11125-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11125-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11124-2

  • Online ISBN: 978-3-642-11125-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics