Skip to main content

Eigenfunction Expansions On Semisimple Lie Groups

  • Chapter
Book cover Harmonic Analysis and Group Representation

Part of the book series: C.I.M.E. Summer Schools ((CIME,volume 82))

  • 1153 Accesses

Abstract

1. In these lectures it will be my aim to discuss some aspects of the problem of obtaining an explicit Plancherel formula for a connected real semisimple Lie group with finite center, and the close connection of this problem with the theory of eigenfunction expansions on the group. The central results are those of Harish Chandra, and it is impossible to give anything more than a partial outline of his monumental work that began in the early ' 50' s and has spanned almost three decades.

For a given locally compact group which is separable and unimodular, the fundamental problem is that of decomposing its regular representation into irreducible constituents. If the group is commutative or compact this is quite classical. However, apart from some general existence theorems (see for instance Segal [l]), there is no systematic development of harmonic analysis on general locally compact groups. The category of locally compact groups (even separable and unimodular) is so extensive and the structure of its individual members so varied that it has so far proved impossible to develop analysis on these groups beyond a few general theorems. For Lie groups the situation is much better, and among these the semisimple groups (both real and p-adic) occupy a central position. We know their structure in great detail and are able to use this knowledge in formulating and solving the questions of harmonic analysis in a significant manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Eguchi [l] Asymptotic exapnsions of Eisenstein integrals and Fourier transform on symmetric spaces, Jour. of Functional Analysis 34 (1979), 167–216.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Ehrenpreis and F. I. Mautner [l] Some properties of the Fourier transform on semisimple Lie groups, I, Ann. Math. 61 (1955), 406–439; II, Trans. Amer. Math. Soc. 84 (1957), 1–55; III, Trans. Amer. Math. Soc. 90 (1959), 431–484.

    Article  MathSciNet  Google Scholar 

  3. T. J. Enright [l] On the fundamental series of a real semisimple Lie algebra: their irreducibility, resolutions, and multiplicity formulae, Ann. Math. 110 (1979), 1–82.

    Article  MathSciNet  Google Scholar 

  4. T. J. Enright and N. R. Wallach [l] The fundamental series of semisimple Lie algebras and semisimple Lie groups (preprint).

    Google Scholar 

  5. I. M. Gel'fand and M. A. Naǐmark [1] Unitäre Darstellungen der Klassischen Gruppen, Akademic-Verlag, Berlin 1957

    Google Scholar 

  6. S. G. Gindikin and F. I. Karpelevič [l] Plancherel measure for symmetric Riemannian spaces of non positive curvature, Dok. Akad. Nauk. SSSR. 145(1962), 252–255.

    MathSciNet  Google Scholar 

  7. Harish Chandra [l] Spherical functions on a semisimple Lie group, I. Amer. Jour. Math. 80 (1958)., 241–310.

    Article  MATH  Google Scholar 

  8. Spherical functions on a semisimple Lie group II, Amer. Jour. Math. 80 (1958), 553–613.

    Article  Google Scholar 

  9. Harmonic Analysis on real reductive groups I. The theory of the constant term. Jour, of Functional Analysis 19 (1975), 104–204.

    Article  MATH  Google Scholar 

  10. Harmonic Analysis on real reductive groups II. Wave packets in the Schwartz space, Inv. Math. 36 (1976), 1–55.

    Article  MATH  Google Scholar 

  11. Harmonic Analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula, Ann. Math. 104 (1976), 117–201.

    Article  Google Scholar 

  12. Discrete series for semisimple Lie groups, I, Acta Math. 113 (1965), 251–318.

    Google Scholar 

  13. Discrete series for semisimple Lie groups, II, Acta Math. 116 (1966), 2–111.

    Google Scholar 

  14. Harmonic Analysis on semisimple Lie groups, Bull. AMS 76 (1970), 529–551.

    Article  MATH  Google Scholar 

  15. The Plancherel formula for complex semisimple Lie groups, Trans. AMS 76 (1954), 485–528.

    Article  MATH  Google Scholar 

  16. Plancherel formula for the 2×2 real unimodular group, Proc. Nat. Acad. Sci. USA 38 (1952), 337–342.

    Article  MATH  Google Scholar 

  17. Some results on differential equations and their applications, Proc. Nat. Acad. Sci. USA 45 (1959), 1763–1764.

    Article  MATH  Google Scholar 

  18. Two theorems on semisimple Lie groups, Ann. Math. 83 (1966), 74–128.

    Article  Google Scholar 

  19. A.W. Knapp [1] Commutativity of Intertwining operators II, Bull. AMS 82 (1976), 271–273.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Kostant [1] On the existence and irreducibility of certain series of representations, Lie groups and their representations, Edited by I. M. Gel'fand, Halsted Press, 1975.

    Google Scholar 

  21. S. Lang [1] “SL2 (R)”, Addison-Wesley, Reading, Mass., 1975.

    Google Scholar 

  22. K. R. Barthasarathy, R. Ranga Rao, and V. S. Varadarajan [1] Representations of complex semisimple Lie groups and Lie algebras, Ann. Math. 85. (1967), 383–429.

    Article  Google Scholar 

  23. I. E. Segal [1] An extension of Plancherel's formula to separable unimodular groups, Ann. Math. 52 (1950), 272–292.

    Article  Google Scholar 

  24. P. C. Trombi [1] Asymptotic expansions of matrix coefficients: the real rank one case, Jour, of Functional Analysis 30 (1978), 83–105.

    Article  MathSciNet  MATH  Google Scholar 

  25. Harmonic analysis of CP(G:F) (l ≤p < 2), (preprint).

    Google Scholar 

  26. Invariant harmonic analysis on split rank one groups with applications, (preprint).

    Google Scholar 

  27. P. C. Trombi and V. S. Varadarajan [1] Spherical transforms on semisimple Lie groups, Ann. Math 94 (1971), 246–303.

    Article  MathSciNet  Google Scholar 

  28. V. S. Varadarajan [1] Harmonic Analysis on real reductive groups, Lecture Notes in Mathematics #576, Springer Verlag, 1977.

    Google Scholar 

  29. Lie groups, Lie Algebras, and their representations, Prentice Hall, 1974.

    MATH  Google Scholar 

  30. Infinitesimal theory of representations of semisimple Lie groups, Lectures given at the Nato Advanced Study Institute at Liege, Belgium on Representations of Lie groups and Harmonic Analysis, 1977.

    Google Scholar 

  31. N. R. Wallach [1] Cyclic vectors and irreducibility for principal series of representations, Trans. AMS 158 (1971), 107–112.

    MathSciNet  MATH  Google Scholar 

  32. G. Warner [I] Harmonic Analysis on semisimple Lie groups, I, II. Springer Verlag, 1972.

    Google Scholar 

  33. D. P. Zhelebenko [1] The analysis of irreducibility in the class of elementary representations of a complex semisimple Lie group, Math - USSR Izvestra 2 (1968), 105–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Figà Talamanca

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varadarajan, V. (2010). Eigenfunction Expansions On Semisimple Lie Groups. In: Talamanca, A.F. (eds) Harmonic Analysis and Group Representation. C.I.M.E. Summer Schools, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11117-4_6

Download citation

Publish with us

Policies and ethics