Skip to main content

Some Mathematical Problems Arising in Neurobiology

  • Chapter
Book cover Mathematics of Biology

Part of the book series: C.I.M.E. Summer Schools ((CIME,volume 80))

Abstract

Outline of Lectures

  1. 1.

    Physiological Background, work of Hodgkin and Huxley, Hodgkin-Huxley equations.

  2. 2.

    Mathematical problems for the Hodgkin-Huxley equations, simplified models.

  3. 3.

    Existence theorems for travelling waves.

  4. 4.

    Stability of travelling waves, multiple pulses.

  5. 5.

    Multi-cellular phenomena, relation to patterns seen in chemistry.

  6. 6.

    Discrete models of excitable media.

These lectures will largely be devoted to the study of mathematical problems originating in the work of A. L. Hodgkin and A. F. Huxley, who, in 1952, proposed a set of partial differential equations to describe the transmission of an electrical impulse by a nerve axon [2], [3]. This set of equations is probably the most important mathematical model in physiology, and yet for nearly twenty years few mathematicians were aware of its existence. Recently, however, a number of people have studied the Hodgkin-Huxley (HH) equations, and it has become clear that they lead to several interesting and fundamental mathematical problems. In some cases resolution of these problems may increase our understanding of message transmission in the nervous system. Further, it has developed that there is an intimate connection between nerve models and equations describing other phenomena, such as certain chemical reactions which can support time periodic two dimensional spatial patterns. It is suspected that similar processes may play a role in pattern formation in many other settings, but here I will concentrate almost entirely on developments related to neurobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References For Lecture I

  1. Evans, J.W. and J.A. Feroe. Local Stability Theory of the Nerve Impulse. Math, Biosciences 37 (1977), 23–50.

    Article  MATH  Google Scholar 

  2. Hodgkin, A.L. The Conduction of the Nervous Impulse. Ryerson, Toronto; Liverpool University, and Springfield, 111; Charles C. Thomas (1964).

    Google Scholar 

  3. Hodgkin, A.L. and A. F. Huxley. A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve, J. Physiology 117 (1952), 500–544.

    Google Scholar 

  4. 4. Huxley, A.F. Ion Movement during Nerve Activity, Annals of the N.Y. Academy of Sciences 8l (1959), 215–510.

    Google Scholar 

  5. Katz, B. Nerve, Muscle, and Synapse. McGraw Hill, New York, 1966.

    Google Scholar 

References For Lecture II

  1. Carpenter, G., A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Diff. Eqns. 23 (1977), 335–367.

    Article  MathSciNet  MATH  Google Scholar 

  2. ————, Periodic solutions of nerve impulse equations. J. Math. Anal. Appl. 58. (1977), 152–173.

    Article  MathSciNet  MATH  Google Scholar 

  3. ————, Bursting phenomena in excitable membranes. SIAM J. Appl. Math., 1979.

    Google Scholar 

  4. Casten, R., H. Cohen, and P. Lagerstrom, Perturbation analysis of an approximation to the Hodgkin-Huxley theory. Quart. Appl. Math. 32. (1975), 365–402.

    MathSciNet  MATH  Google Scholar 

  5. Chueh, K.N., C.C. Conley, and J. Smoller, Positively invariant regions for systems of nonlinear diffusion equations. Indian Univ. Math. J. 26 (1977), 373–392.

    Article  MathSciNet  MATH  Google Scholar 

  6. Evans, J., Nerve axon equations, I: linear approximations. Indiana Univ. Math. J., 21 (1972), 877–885.

    Article  MATH  Google Scholar 

  7. ————, Nerve axon equations, II: stability at rest. Ibid. 22 (1972), 75–90.

    Article  MathSciNet  MATH  Google Scholar 

  8. ————, Nerve axon equations, III: stability of the nerve impulse. Ibid. 22 (1972), 577–594.

    Article  MathSciNet  MATH  Google Scholar 

  9. ————, Nerve axon equations, IV: The stable and the unstable impulse. Ibid. 24 (1975), 1170–1190.

    Article  Google Scholar 

  10. Feroe, J., Local existence of the nerve impulse. Math. Biosci. 38. (1978), 259–277.

    Article  MathSciNet  MATH  Google Scholar 

  11. FitzHugh, R., Mathematical models of excitation and propagation in nerve, in Biological Engineering, H.P. Schwan, ed., McGraw-Hill, N.Y. (1969).

    Google Scholar 

  12. Hassard, B.D., Singular traveling wave solutions of the Hodgkin-Huxley model nerve conduction equations, to appear.

    Google Scholar 

  13. Hastings, S. P., On travelling wave solutions of the Hodgkin-Huxley equations. Arch. Rat. Mech. Anal. 60 (1976), 229–257.

    Article  MathSciNet  MATH  Google Scholar 

  14. McKean, H.P., Nagumo's equations, Adv. in Math. 4 (1970), 209–223.

    Article  MathSciNet  MATH  Google Scholar 

  15. Nagurao, J., S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE 50 (1962), 2061–2070.

    Article  Google Scholar 

  16. Rauch, J. and J. Smoller, Qualitative theory of FitzHugh-Nagumo equations. Adv. Math 22 (1978), 12–44.

    Article  MathSciNet  Google Scholar 

  17. Schonbek, M.E., Boundary value problems for the FitzHugh-Nagumo equations. Math. Res. Ctr. Report #1739, University of Wisconsin (Madison), 1977.

    Google Scholar 

References For Lecture III

  1. Carpenter, G., (See Reference 1, Lecture II).

    Google Scholar 

  2. Casten, R., H. Cohen, and P. Lagerstrom, (Lecture II, Reference 4).

    Google Scholar 

  3. Hastings, S. P., The Existence of Periodic Solutions to Nagumo's Equation. Quart. J. Math. (Oxford) 25 (1974), 369–378.

    Article  MathSciNet  MATH  Google Scholar 

  4. Hastings, S.P., On the Existence of Homoclinic and Periodic Orbits for the FitzHugh-Nagumo Equations. Quart. J. Math. (Oxford) 22 (1976), 123–134.

    Article  MathSciNet  Google Scholar 

  5. Nemytski, V. V. and V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, N. J. (1960).

    Google Scholar 

References For Lecture IV

  1. Aronson, D. and H. Weinberger, Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Propagation. Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, 446, Springer-Verlag, 1975, 5–49.

    Article  MathSciNet  Google Scholar 

  2. Carpenter, G., A Geometric Approach to Singular Perturbation Problems with Applications to Nerve Impulse Equations. J, Diff. Equs. 23 (1977), 335–367.

    Article  MathSciNet  MATH  Google Scholar 

  3. ————, Periodic Solutions of Nerve Impulse Equations, J. Math. Anal. Appl. 58. (1977), 152–173.

    Article  MathSciNet  MATH  Google Scholar 

  4. ————, Bursting Phenomena in Excitable Membranes. SIAM. J. Appl. Math, 1978.

    Google Scholar 

  5. Cooley, J., F. Dodge, and H. Cohen, Digital Computer Solutions for Excitable Membrane Models. J. Cell. Comp. Physiol. 66 (Suppl. 2), 1965), 99–108.

    Article  Google Scholar 

  6. Evaits, J. Nerve Axon Equations: I. Linear Approximations. Indiana Univ. Math. J. 21 (1972), 677–885.

    Google Scholar 

  7. Evans, J., Nerve Axon Equations III. Stability of the Nerve Impulse. Ibid. 22 (1972), 577–593. See also IV, The Stable and Unstable Impulse, Ibid. 24 (1975), 1171–1190.

    Article  MathSciNet  MATH  Google Scholar 

  8. Evans, J. and N. Fenichel, to appear.

    Google Scholar 

  9. Evans, J. and J. Feroe, Local Stability Theory of the Nerve Impulse, Math. Biosci. 37 (1977), 23–50.

    Article  MATH  Google Scholar 

  10. Feroe, J., Existence and Stability of Multiple Impulse Solutions of a Nerve Equation, to appear.

    Google Scholar 

  11. Fife, P. and J. B. McLeod, The Approach of Solutions of a Nonlinear Diffusion Equation to Travelling Wave Solutions. Bull. Am. Math. Soc. 81 (1975), 1076–1078.

    Article  MathSciNet  MATH  Google Scholar 

  12. Guttman, R., S. Lewis, and J. Rinzel, Control of Repetitive Firing in Squid Axon Membrane as a Model for a Neuron Oscillator, to appear.

    Google Scholar 

  13. Hassard, B. D., Bifurcation of periodic solutions of the Hodgkin Huxley model for the squid giant axon, J. Theo. Biol. 71 (1978), 401–419.

    Article  MathSciNet  Google Scholar 

  14. Rinzel, J. On Repetitive Activity in Nerve. Federation Proceedings, 1979.

    Google Scholar 

  15. Rinzel, J. and J. Keller, Travelling Wave Solutions of a Nerve Conduction Equation. Biophys. J.,13 (1973), 1313–1337.

    Article  Google Scholar 

  16. Sabah, N. H. and R. Spangler, Repetitive Response of the Hodgkin-Huxley Model for the Squid Giant Axon. J. Theor. Bio. 29 (1970), 155–171.

    Article  Google Scholar 

  17. Troy, W. C, Bifurcation Phenomena in Fitzhugh's Nerve Conduction Equations, J. Math. Anal, and Appl., 54 (1976), 678–690.

    Article  MathSciNet  MATH  Google Scholar 

  18. ————, Oscillation Phenomena in the Hodgkin-Huxley Equations. Proc. Roy. Soc. Edinburgh 74 A (1975), 299–310.

    MathSciNet  Google Scholar 

References For Lecture V

  1. Cowan, J. D., Mathematical Models of Large-Scale Nervous Activity, in Some Mathematical Questions in Biology V, Amer. Math. Soc., Providence, 1974. (This describes work of Wilson and Cowan.)

    Google Scholar 

  2. Field, R. and R. Noyes. Oscillations in Chemical Systems IV, J. Chem, Phys. 160, 1877–1884.

    Google Scholar 

  3. Field, R. and W. Troy, The Amplification before Decay of Perturbations around Stable Steady States in a Model of the Zhabotinskii Reaction, SIAM J. Appl. Math. 32. (1977), 306–322.

    Article  MathSciNet  Google Scholar 

  4. ————, The Existence of Solitary Travelling Wave Solutions of a Model of the Belousov-Zhabotinskii Reaction. To appear in SIAM J. Appl. Math.

    Google Scholar 

  5. Hartline, H. K. and F. Ratliff, Inhibitary Interaction of Receptor Units in the Eye of Limulus, J. Gen. Physiol. 10 (1957), 357–376.

    Article  Google Scholar 

  6. Knight, B. W., J. Toyoda and F. A. Dodge. A Quantitative Description of the Dynamics of Excitation and Inhibition in the Eye of Limulus, J. Gen. Physiol. 56 (1970), 421–437.

    Article  Google Scholar 

  7. Leão, A.A.P., Spreading Depression of Activity in the Cerebral Cortex. J. Neurophysiol. 7 (1944), Pg, 359.

    Google Scholar 

  8. Shibata, M. and J. Bures. Reverberation of Cortical Spreading Depression along Closed-loop Pathways in Rat Cerebral Cortex. J. Neurophysiol. 315 (1972), pg. 381.

    Google Scholar 

  9. Troy, W. C. Threshold Phenomena in the Field-Noyes Model of the Belousov-Zhabotinskii Reaction. J. Math. Anal, and Appl. 58 (1977), 233–248.

    Article  MathSciNet  MATH  Google Scholar 

  10. Tuckwell, M. and R. Muira. A Mathematical Model for Spreading Cortical Depression, Biophys. J. 23 (1978), 257–276.

    Article  Google Scholar 

  11. Zaikin, A. N. and A. M. Zhabotinskii, Nature 255 (1970), pg. 535.

    Article  Google Scholar 

  12. Zhabotinskii, A. M. Dokl. Akad. Nauk SSR 157 (1964), pg. 392.

    Google Scholar 

References For Lecture VI

  1. Cohen, D.S., J. Neu and R. Rosales. Rotating Spiral Wave Solutions of Reaction - Diffusion Equations. To appear.

    Google Scholar 

  2. Greenberg, J. M. and S. P. Hastings, Spatial Patterns for Discrete Models of Diffusion in Excitable Media. SIAM J. Appl. Math. 34 (1978).

    Google Scholar 

  3. Greenberg, J. M., B. D. Hassard and S. P. Hastings, Pattern Formation and Periodic Structures in Systems Modeled by Reaction-Diffusion Equations. Bulletin Amer. Math. Soc. 84 (1978), 1296–1327.

    Article  MathSciNet  MATH  Google Scholar 

  4. Greenberg, J. M., C. Greene and S. P. Hastings. A Combinatorial Problem Arising in the Study of Reaction-Diffusion Equations. SIAM J. Appl. Math.. To appear.

    Google Scholar 

  5. Hastings, S. P., A Winding Number Principle for Some Semi-discrete Models of Excitable Media. To appear.

    Google Scholar 

  6. Wiener, N. and A. Rosenblueth. The Mathematical Formulation of the Problem of Conduction of Impulses in a Network of Connected Excitable Elements, Specifically in Cardiac Muscle. Arch. Inst. Cardiol. Mexico 16 (1946), 205–265.

    MathSciNet  Google Scholar 

  7. Winfree, A. T., Rotating Solutions to Reaction/Diffusion Equations in Simply Connected Media. SIAM-AMS Proceedings 8, Am. Math. Soc. Providence, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mimmo Iannelli

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hastings, S. (2010). Some Mathematical Problems Arising in Neurobiology. In: Iannelli, M. (eds) Mathematics of Biology. C.I.M.E. Summer Schools, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11069-6_4

Download citation

Publish with us

Policies and ethics