Skip to main content

Geometrical Methods in the Differential Geometry of Finsler Spaces

  • Chapter

Part of the book series: C.I.M.E. Summer Schools ((CIME,volume 23))

Abstract

The treatment of metric spaces (Finsler spaces) by the methods of differential geometry involves a lot of geometric objects (tensors, objects of connection etc.), the geometrical background of Which is in most cases not obvious. In some cases, these objects are more or less formal generalizations of corresponding objects of Riemannian geometry; in other instances, corresponding Riemannian objects do not exist. In Riemannian geometry, all of the objects needed have a significant geometrical background, either from elementary surface theory or from intrinsic properties. The situation in the more general metric spaces is apparently far more complicated. For instance, geometrical reasons for the choice of the tensors \( {\text{C}}_{{\text{j}}\,\,{\text{k}}}^{\text{i}} \,{\text{,}}\,{\text{A}}_{{\text{j}}\,\,{\text{k}}}^{\text{i}} \) in the theory of Finsler spaces (CARTAN [1] ) and for the choice of the different connection coefficients introduced by various authors are far from being evident. In fact, there are lots of connections for Finsler spaces 1) which are essentially different from each other, each of them having its special advantages for certain problems and all of them generalizing Levi-Civita's parallelism for Riemannian geometry. The method for introducing a connection in Finsler geometry has in general been the setting up of a number of postulates which lead to a certain object of connection. All of these sets of postulates take a few of the properties of Levi-Civita's connection, which are said to be the essential geometrical properties of this connection; looked at without any bias, any choice of such “fundamental” properties will seem arbitrary. This state of basing Finsler geometry on objects which are apparently derived by only formal deductions, may look very unsatisfactory. One may ask, if any geometrical procedures might be found to furnish the fundamental geometric objects of Finsler geometry with a geometrical background. Such procedures should, moreover, decide for or against one or the other formal possibility to generalize an object of Riemannian geometry to Finsler spaces. The treatment of such geometrical procedures will be the subject of these lectures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BARTHEL, W. : Űber eine Parallelverschiebung mit La̎ngeninvarianz in lokal-Minkowskischen Ra̎umen, Arch, d.Math. 4, 346–365 (1953).

    Article  MathSciNet  Google Scholar 

  2. BERWALD, L. : Űber affine Geometrie XXX. Die oskulierenden Fla̎chen zweiter Ordnung in der affinen Fla̎chen theorie, Math.Z.10160–172 (1921).

    Article  Google Scholar 

  3. Die Grundgleiehungen der Hyperfla̎chen im euklidischen Raum gegenűber den inhaltstreuen Affinita̎ten, Monatsh.f.Math. 32, 89–106 (1922).

    Article  MATH  MathSciNet  Google Scholar 

  4. Űber Parallelűbertragung in Ra̎umen mit allgemeiner Massbestimmung,Jahresb, deutsch.Math. Ver. 34, 213–220 (1926),

    MATH  Google Scholar 

  5. Untersuchung der Krűmmung allgemeiner metrischer Raűme auf Grund des in ihnen herrschenden Parallelismus, Math.Z.25, 40–73 (1926).

    Article  MATH  MathSciNet  Google Scholar 

  6. BLASCHKE, W. : Vorlesungen űber Differentialgeometrie II.Affine Differentialgeometrie, Berlin (1923).

    Google Scholar 

  7. BOMPIANI, E. : Sulle connessioni affini non posizionali, Arch.d.Math.3, 183–186 (1952).

    Article  MATH  MathSciNet  Google Scholar 

  8. BRUNN, H. : Űber Kurven ohne Wendepumkte, Habilitations schrift Műnchen(1889).

    Google Scholar 

  9. BUSEMANN, H. : The geometry of geodesics, New York (1955).

    MATH  Google Scholar 

  10. CARTAN, E. : Les espaces de Finsler, Paris (1934).

    MATH  Google Scholar 

  11. DANZER, L., D. LAUGWITZ und H. LENZ : Uber das L&wnersche Ellipsoid, Arch.d.Math.8, 214–219 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  12. DEICKE, A. : Űber die Finsler-Ra̎ume mit A1, = o, Arch.d.Math. 4, 45–51 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  13. DELENS, P. : La métrique angulaire des espaces de Finsler et la géométrie différentielle projective, Paris (1934).

    MATH  Google Scholar 

  14. FREUDENTHAL, H. : Zu den Weyl-Cartanschen Raumproblemen, Arch.d.Math. 11, 107–15 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  15. HELMHOLTZ, H.V. : Űber die Tatsachen, die der Geometrie zugrunde liegen, Nachr.Ges.Wiss.Gőttingen 193–221 (1868).

    Google Scholar 

  16. KAWAGUCHI, A. : On the theory of non-linear connections II Theory of Minkowski space and of non-linear connections in a Finsler space, Tensor 6, 165–190 (1956).

    MATH  MathSciNet  Google Scholar 

  17. KAWAGUCHI, A. and D. LAUGWITZ : Remarks on the theory of Minkowski spaces, Tensor 7, 190–199 (1957).

    MATH  MathSciNet  Google Scholar 

  18. KNEBELMAN, M.S. : Collineations and motions in generalized space, Amer.J.Math.51, 527–564 (1929).

    Article  MATH  MathSciNet  Google Scholar 

  19. LANDSBERG, G. : Krűmmuangstheorie und Variationsrechnung, Jahresb, DMV.16,547–551(1907).

    MATH  Google Scholar 

  20. LAUGWITZ, D. : Differentialgeometrie, Teubner-Verlag Stuttgart (1960).

    Google Scholar 

  21. Grundlagen fűr die Geometrie der unendlichdimensionalen Finslerra̎ume, Annali mat.pura appl. 41, 21–41 (1955).

    MathSciNet  Google Scholar 

  22. Zur geometrischen Begrűndung der Parallelverschiebung in Finslerschen Ra̎umen, Arch.d.Math. 6, 448–453 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  23. Vektorűbertragungen in der Finslerschen Geometrie und der Wegegeometriè Indagationes math.18,21–29(1956).

    MathSciNet  Google Scholar 

  24. Űber die Invarianz quadratischer Formen bei linearen Gruppen und das Ra̎umproblem,Nachr.Ges.Wiss.Gőttingen 21–25 (1956).

    Google Scholar 

  25. Űber die Rolle der quadratischen Metrik in der Physik, Zeitschr.f.Naturforschung, 9a, 827–832 (1954).

    MathSciNet  Google Scholar 

  26. Zur Differentialgeometrie der Hyperfla̎chen in Vektorra–umen und zur affingeometrischen Deutung der Theorie der Finslerra̎ume,Math.Z.67,63–74(1957).

    Article  MATH  MathSciNet  Google Scholar 

  27. Eime Beziehung zwischen Minkowskischer und affiner Differentialgeometrie, Publ.math.Debrecen, 5, 72–76 (1957).

    MathSciNet  Google Scholar 

  28. Űber eine Vermutung von H.Weyl zum Ka̎umproblem, Arch.d.Math.9, 128–133 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  29. Geometrische Behandlung eines inversen Problems der Variationsrechnung, Annales Univ.Sarav.Sciences 5,235–244 (1956).

    MathSciNet  Google Scholar 

  30. LAUGWITZ, D. : Die Geometrien von H.Minkowski, Der Mathematikunterricht(1958), 27–42(Heft4).

    Google Scholar 

  31. Beitra̎ge zur affinen Fla̎chentheorie mit Anwendungen auf die allgemeinmetrische Differentialgeometrie, Abhandl. Bayer. Akad. Wiss. Műnchen, Math.nat.K1.Neue Folge Heft 93, Műnechen 1959, 59 S.

    Google Scholar 

  32. Űber einen Typ von Geoaetrien, welche die Riemannsche verallgemeinern, Publ.math.Debrecen 7, 72–77 (1960).

    MATH  MathSciNet  Google Scholar 

  33. Einige differentialgeometrische charakterisierungen der Quadriken. Annali di mat.pura ed appl. (To appear).

    Google Scholar 

  34. LENZ, H. : Einige Anwendungen der projektlven Geometrie auf Fragen der Fla̎chentheorie, Math.Nachr.l8, 346–359 (1958).

    Article  MathSciNet  Google Scholar 

  35. LIE, S. : Theorie der Transformationsgruppen III, Abt. V. Leipzig (1893).

    Google Scholar 

  36. LORCH, E.R. : A curvature study of convex bodies in Banach spaces, Annali di mat.pura ed appl. 34, 105– 112 (1955).

    Article  MathSciNet  Google Scholar 

  37. LORCH, E.R. and D. LAUGWITZ : Eiemann metrics associated with convex bodies in normed spaces, Amer.J.Math. 78, 889–894 (1956).

    Article  MATH  MathSciNet  Google Scholar 

  38. MAYER, o. : Géométrie centro-affine différentielle des surfaces, Ann.Scient.Univ.Jassy 21, 1–77 (1935).

    Google Scholar 

  39. NAZIM, A. : Űber Finslersche Ra̎ume, Thesis Műnchen (1936).

    Google Scholar 

  40. REIDEMEISTER, K. : Das Lie-Helmholtzsche Ra̎umproblem und ein Satz von Maschke, Abh.Math.Sem.Hamburg 4, 172–173 (1925).

    Article  MATH  Google Scholar 

  41. RIEMANN, B. : Űber die Hypothesen, die der Geometrie zugrunde liegen, Lecture Gőttingen(1854). Reprint Berlin (1919).

    Google Scholar 

  42. RUND, H. : The differential Geometry of Finsler spaces, Berlin (1959).

    MATH  Google Scholar 

  43. Űber die Parallelverschiebung in Finslerschen Ra̎umen, Math.Z. 54, 115–128 (1951).

    Article  MATH  MathSciNet  Google Scholar 

  44. RUND, H. : On the analytical properties of curvature tensors in Finsler spaces, Math.Ann. 127, 82–104 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  45. SALKOWSKI, E. : Affine Differentialgeometrie, Berlin-Leipzig (1934).

    MATH  Google Scholar 

  46. SANDOR, I. : A. Minkovski-féle tér mértékfelűletére vonatkozó Darboux képletek, 2nd Hungarian Math. Congress, Budapest (1960), supplement to the abstracts of lectures, 48–50.

    Google Scholar 

  47. SYNGE, J.L. : A generalisation of the Riemannian line-element, Trans. Amer.math. Soc.27, 61–67 (1925).

    Article  MATH  MathSciNet  Google Scholar 

  48. TAYLOR, J.H. : A generalisation of Levi-Civitas parallelism and the Frenet formulas. Trans.Amer.math. Soc. 27, 246–264 (1925).

    MATH  MathSciNet  Google Scholar 

  49. VAGNER, V.V. : The geometry of Finsler as the theory of a field of local hypersurfaces in Xn., Trudy sem.vektor.tenzor analizu 7, 65–106 (1949) (in Russian).

    MathSciNet  Google Scholar 

  50. VARGA, O. : Zur Herleitung des invarianten Differentials in Finslerschen Ra̎umen, Monatsh.Math.Phys. 50, 165–175 (1941).

    Article  MATH  MathSciNet  Google Scholar 

  51. Die Krummung der Eichfla̎che des Minkowskischen Raumes und die geometrische Deutung des einen Krűmmungstensors des Finslerschen Raumes, Abh.math.Sem.Univ.Hamburg. 20, 41–51 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  52. WEYL,, H. : “Kommentar” to Riemann's lecture, Berlin (1919).

    Google Scholar 

  53. Mathematische Analyse des Raumproblems, Berlin (1923).

    Google Scholar 

Download references

Authors

Editor information

E. Bompiani

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laugwitz, D. (2011). Geometrical Methods in the Differential Geometry of Finsler Spaces. In: Bompiani, E. (eds) Geometria del calcolo delle variazioni. C.I.M.E. Summer Schools, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10959-1_3

Download citation

Publish with us

Policies and ethics