Skip to main content

Pathogene Mikroorganismen

  • Chapter
  • First Online:
  • 7549 Accesses

Zusammenfassung

Infektionen, die vom Tier auf den Menschen übertragen werden, werden als Zoonosen bezeichnet. Pathogene Mikroorganismen können entweder durch Mensch-Mensch, Mensch-Tier-Kontakt oder durch Kontakt mit kontaminierten Vektoren übertragen werden [39]. Vektoren können einerseits belebt (z. B. blutsaugende Insekten), andererseits unbelebt sein. Kontaminierte Lebensmittel und Wasser gehören zu den wichtigsten unbelebten Vektoren. Neben Lebensmitteln können aber auch kontaminierte Gegenstände oder der Kontakt mit Kontaminationsquellen in der Umwelt Auslöser von Krankheitsfällen sein. Weltweit sind mehr als 1400 krankheitsverursachende biologische Agentien bekannt, von denen über 60 % ein zoonotisches Potenzial aufweisen. Als Ergebnis von Expertengesprächen wurde kürzlich berichtet, dass etwa 3 bis 4, meist virale, neu auftretende Infektionskrankheiten („emerging diseases“) pro Jahr erwartet werden können [15]. Es handelt sich bei diesen Vorgängen aber nicht nur um das Auftauchen vollkommen neuer oder unbeschriebener Spezies, sondern auch um evolutionsbedingte Anpassungen von mikrobiellen Populationen an neue Bedingungen in ihrem Ökosystem [7]. Molekulare Analysen an Umweltchlamydien erbrachten Hinweise, dass die Evolution erste genetische Pathogenitätsmerkmale in dieser Spezies schon vor 700 Mio. Jahren entstehen ließ [14]. Viele Faktoren befeuern den Prozess der Anpassung, unter anderem auch alle Strategien, mit denen der Mensch seit Jahrtausenden versucht, Lebensmittel sicher und haltbar zu machen. Als die treibenden Kräfte des Auftretens neuer Krankheitserreger werden in der Gegenwart vor allem das sich ändernde Weltklima, die globalen Warenströme und die sich verändernden Konsumgewohnheiten genannt. Es steht auch außer Zweifel, dass viele dieser Erreger Tiere als ihr natürliches Reservoir haben werden, d. h. Zoonosen im klassischen Sinne sind [15].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Anonymus (2005) Microbiology of food and animal feeding stuffs-Polymerase Chain Reaction for the detection of foodborne pathogens-Performance testing for thermal cyclers (ISO/TS 20836). Internationale Standardisierungsorganisation (ISO), Genf, Schweiz.

    Google Scholar 

  2. Anonymus (2006a) Real-time PCR. Dorak, T. (Ed.), Taylor & Francis Group, New York, USA.

    Google Scholar 

  3. Anonymus (2006b) Microbiology of food and animal feeding stuffs-Polymerase Chain Reaction for the detection of foodborne pathogens-Requirements for sample preparation for qualitative detection (ISO/TS 20837). Internationale Standardisierungsorganisation (ISO), Genf, Schweiz.

    Google Scholar 

  4. Anonymus (2006c) Microbiology of food and animal feeding stuffs-Polymerase Chain Reaction for the detection of foodborne pathogens-Requirements for amplification and detection for qualitative methods (ISO/TS 20838). Internationale Standardisierungs-organisation (ISO), Genf, Schweiz.

    Google Scholar 

  5. Anonymus (2007a) Microbiology of food and animal feeding stuffs-Polymerase Chain Reaction for the detection of foodborne pathogens-Performance characteristics of molecular detection methods (ISO/TS 22118). Internationale Standardisierungs-organisation (ISO), Genf, Schweiz.

    Google Scholar 

  6. Anonymus (2007b) Microbiology of food and animal feeding stuffs-Polymerase Chain Reaction for the detection of foodborne pathogens- General requirements and definitions (ISO/TS 22119). Internationale Standardisierungsorganisation (ISO), Genf, Schweiz.

    Google Scholar 

  7. Cleaveland, S., Haydon, D.T., Taylor, L. (2007) Overviews of pathogen emergence: which pathogens emerge, when and why? Curr. Top. Microbiol. Immunol. 315, 85–111.

    Article  CAS  Google Scholar 

  8. Cook, N. (2003) The use of NASBA for the detection of microbial pathogens in food and environmental samples. J. Microbiol. Meth. 53, 165–174.

    Article  CAS  Google Scholar 

  9. European Communities (EC) (2009) The rapid alert system for Food and Feed (RASFF). Annual Report 2008. RASFF Luxembourg (http://www.efet.gr/docs/rasff/report2008_en.pdf).

    Google Scholar 

  10. European Food Safety Authority (EFSA) (2009) Trend and sources of zoonoses and zoonotic agents in the European Union in 2007. EFSA J. 223.

    Google Scholar 

  11. Flekna, G., Stefanic, P., Smulders, F.J.M., Smole, S., Wagner, M., Hein, I. (2007) Studying the effect of EMA on live and dead Campylobacter jejuni and Listeria monocytogenes cells to augment the scientific basis for the application of EMA/real-time PCR. Res. Microbiol. 158, 405–412.

    Article  CAS  Google Scholar 

  12. Fukushima, H., Katsube, K., Hata, Y., Kishi, R., Fujiwara, S. (2007) Rapid separation and concentration of food-borne pathogens in food samples prior to quantification by viable-cell counting and real-time PCR. Appl. Environ. Microbiol. 73, 92–100.

    Article  CAS  Google Scholar 

  13. Hoorfar, J., Malorny, B., Abdulmawjood, A., Cook, N., Wagner, M., Fach, P. (2004) Practical considerations in design of internal amplification control for diagnostic PCR. J. Clin. Microbiol. 42, 1863–1868.

    Article  CAS  Google Scholar 

  14. Horn, M., Collingro, A., Schmitz-Esser, S., Beier, C.L., Purkhold, U., Fartmann, B., Brandt, P., Nyakatura, G.J., Droege, M., Frishman, D., Rattei, T., Mewes, H.W., Wagner, M. (2004) Illuminating the evolutionary history of chlamydiae. Science 304, 728–730.

    Article  CAS  Google Scholar 

  15. Hueston, W. (2007) The landscape for Veterinary Public Health until 2013. Presentation at the General Meeting of the European College of Veterinary Public Health, Helsinki, 17.-9.-19.9.2007.

    Google Scholar 

  16. Huggett, J., Green, C., Zumla, A. (2009) Nucleic acid detection and quantification in the developing world. Biochem. Soc. Trans. 37, 419–423.

    Article  CAS  Google Scholar 

  17. Klein, P.G., Juneja, V.K. (1997) Sensitive detection of viable Listeria monocytogenes by reverse transcription-PCR. Appl. Environ. Microbiol. 63, 4441–4448.

    CAS  Google Scholar 

  18. Lau, L.T., Fung, Y.W., Yu, A.C. (2006) Detection of animal viruses using nucleic acid sequence-based amplification. Dev. Biol. 126, 7–15.

    CAS  Google Scholar 

  19. Lauer, P., Chow, M.Y., Loessner, M.J., Portnoy, D.A., Calendar, R. (2002) Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 184, 4177–4186.

    Article  CAS  Google Scholar 

  20. Lindqvist, R., Norling, B., Lambertz, S.T. (1997) A rapid preparation method for PCR detection of food pathogens based on buoyant density centrifugation. Lett. Appl. Microbiol. 24, 306–310.

    Article  CAS  Google Scholar 

  21. Malorny, B., Tassios, P.T., Radström, P., Cook, N., Wagner, M., Hoorfar, J. (2002) Standardization of diagnostic PCR for the detection of foodborne pathogens. International J. Food Microbiol. 83, 39–48.

    Article  Google Scholar 

  22. Mayrl, E., Roeder, B., Mester, P., Wagner, M., Rossmanith, P. (2009) Broad range evaluation of the matrix solubilization (matrix lysis) strategy for direct enumeration of food-borne pathogens by nucleic acids technologies. J. Food Prot. 72 (6), 1225–1233.

    Google Scholar 

  23. Mead, P.S., Slutsker, L., Dietz, V., McCaig, L.F., Bresee, J.S., Shapiro, C., Griffin, P.M., Tauxe, R.V. (1999) Food-related illness and death in the United States. Emerg. Infect. Dis. 5, 607–625.

    Article  CAS  Google Scholar 

  24. Morrison, T., Hurley, J., Garcia, J., Yoder, K., Katz, A., Roberts, D., Cho, J., Kanigan, T., Ilyin, S.E., Horowith, D., Dixon, J.M., Brenan, C.J. (2006) Nanoliter high throughput quantitative PCR. Nucl. Acids Res. 34 (18), e123.

    Article  Google Scholar 

  25. Nocker, A., Camper, A.K. (2006) Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl. Environ. Microbiol. 72, 1997–2004.

    Article  CAS  Google Scholar 

  26. Nocker, A., Ceung, C.-Y., Camper, A.K. (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Meth. 67, 310–320.

    Article  CAS  Google Scholar 

  27. Nogva, H.K., Drømtorp, S.M., Nissen, H., Rudi, K. (2003) Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. BioTechniques 34, 804–813.

    CAS  Google Scholar 

  28. Norton, D.-M., Batt, C.A. (1999) Detection of viable Listeria monocytogenes with a 5′nuclease PCR assay. Appl. Environ. Microbiol. 65, 2122–2127.

    CAS  Google Scholar 

  29. Oravcová, K., Kuchta, T., Kacliková, E. (2007) A novel real-time PCR based method for the detection of Listeria monocytogenes in food. Lett. Appl. Microbiol. 45, 568–573.

    Article  Google Scholar 

  30. Pappelbaum, K., Grif, K., Würzner, R., Hein, I., Ellerbroek, L., Wagner, M. (2008) Contamination chains of Listeria monocytogenes in a produce processing plant. J. Food Prot. 71, 735–741.

    Google Scholar 

  31. Rossmanith, P., Süß, B., Wagner, M., Hein, I. (2007) Development of a novel method based on matrix lysis for concentration of bacteria from food and blood and application for the real-time PCR based quantification of L. monocytogenes in milk. J. Microbiol. Meth. 69, 504–511.

    Article  CAS  Google Scholar 

  32. Rudi, K., Moen, B., Drømtorp, S.M., Holck, A.L. (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl. Environ. Microbiol. 71, 1018–1024.

    Article  CAS  Google Scholar 

  33. Rueckert, A., Ronimus, R.S., Morgan, H.W. (2005) Rapid differentiation and enumeration of the total, viable vegetative cell and spore content of thermophilic bacilli in milk powders with reference to Anoxybacillus flavithermus. J. Appl. Microbiol. 99, 1246–1255.

    Article  CAS  Google Scholar 

  34. Schlech, W.F., Lavigne, P.M., Bortolussi, R.A., Allen, A.C., Haldane, E.V., Wort, A.J., Hightower, A.W., Jonson, S.E., King, S.H., Nicholls, E.S., Broome, C.V. (1983) Epidemic listeriosis -- evidence for transmission by food. New Engl. J. Med. 308, 203–206.

    Article  Google Scholar 

  35. Schwillinsky-Reichert, F., Pin, C., Dzieciol, M., Rieck, P., Wagner, M., Hein, I. (2009) Stress and growth rate related differences between plate count and real-time PCR data during growth of Listeria monocytogenes. Appl. Environ. Microbiol. 75(7), 2132–2138.

    Article  Google Scholar 

  36. Süss, B., Flekna, G., Wagner, M., Hein, I. (2009) Studying the effect of single mismatches in primer and probe binding regions on amplification curves and quantification in real-time PCR. J. Microbiol. Meth. 76, 316–319.

    Google Scholar 

  37. Skirrow, M.B. (2006) John McFadyean and the centenary of the first isolation of Campylobacter species. Clin. Infect. Dis.43 (9), 1213–1217.

    Article  Google Scholar 

  38. Stirling, J., Griffith, M., Dooley, J.S., Goldsmith, C.E., Loughrey, A., Lowery, C.J., McClurg, R., McCorry, K., McDowell, D., McMahon, A., Millar, B.C., Rao, J., Rooney, P.J., Snelling, W.J., Matsuda, M., Moore, J.E. (2008) Zoonoses associated with petting farms and open zoos. Vector Borne Zoon. Dis. 8, 85–92.

    Google Scholar 

  39. Uyttendaele, M., Schukkink, R., Van Gemen, B., Debevere, J. (1995) Detection of Campylobacter jejuni added to foods by using a combined selective enrichment and nucleic acid sequence-based amplification (NASBA). Appl. Environ. Microbiol. 61, 1341–1347.

    CAS  Google Scholar 

  40. Wagner, M., Wolffs, P., Kuhn, M., Schoder, D., Hoorfar, J., Radström, P. (2003) Zur Reproduzierbarkeit von PCR-Ergebnissen. Proc. 44th Jahrestagung der Deutschen Veterinärmedizinischen Gesellschaft für Lebensmittelhygiene, Garmisch-Partenkirchen, 139–147.

    Google Scholar 

  41. Wang, S., Levin, R.E. (2006) Discrimination of viable Vibrio vulnificus cells from dead cells in real-time PCR. J. Microbiol. Meth. 64, 1–8.

    Article  CAS  Google Scholar 

  42. Wolffs, P., Knutsson, R., Norling, B., Rådström, P. (2004) Rapid quantification of Yersinia enterocolitica in pork samples by a novel sample preparation method, flotation, prior to real-time PCR. J. Clin. Microbiol. 42, 1042–1047.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, M. (2010). Pathogene Mikroorganismen. In: Busch, U. (eds) Molekularbiologische Methoden in der Lebensmittelanalytik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10716-0_7

Download citation

Publish with us

Policies and ethics