Skip to main content

Universal Quantum Computation with a Non-Abelian Topological Memory

  • Conference paper
Theory of Quantum Computation, Communication, and Cryptography (TQC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5906))

Included in the following conference series:

Abstract

An explicit lattice realization of a non-Abelian topological memory is presented. The correspondence between logical and physical states is seen directly by use of the stabilizer formalism. The resilience of the encoded states against errors is studied and compared to that of other memories. A set of non-topological operations are proposed to manipulate the encoded states, resulting in universal quantum computation. This work provides insight into the non-local encoding non-Abelian anyons provide at the microscopical level, with an operational characterization of the memories they provide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilczek, F.: Phys. Rev. Lett.  49, 957 (1982)

    Google Scholar 

  2. Brennen, G.K., Pachos, J.K.: Proc. R. Soc. London, A  464, 2089 (2008); and references therein

    Google Scholar 

  3. Kalmeyer, V., Laughlin, R.B.: Phys. Rev. Lett.  59, 2095 (1987)

    Google Scholar 

  4. Read, N., Green, D.: Phys. Rev. B  61, 10267 (2000)

    Google Scholar 

  5. Freedman, M., Larsen, M., Wang, Z.: Commun. Math. Phys.  237, 605 (2002)

    Google Scholar 

  6. Wen, X.-G., Wilczek, F., Zee, A.: Phys. Rev. B  39, 11413 (1989)

    Google Scholar 

  7. Levin, M., Wen, X.-G.: Phys. Rev. B  71, 045110 (2005)

    Google Scholar 

  8. Fendley, P.: Ann. Phys.  323, 3113 (2007)

    Google Scholar 

  9. Wootton, J.R., Lahtinen, V., Wang, Z., Pachos, J.K.: Phys. Rev. B 78, 161102(R) (2008)

    Google Scholar 

  10. Lloyd, S.: Quant. Inf. Proc. 1, 1–2 (2002)

    Google Scholar 

  11. Pachos, J.K.: Int. J. Quant. Inf.  4, 947 (2006)

    Google Scholar 

  12. Wootton, J.R., Pachos, J.K.: 6th Workshop on Quantum Physics and Logic, arXiv:0904.4373 (2008)

    Google Scholar 

  13. Bravyi, S.: Phys. Rev. A  73, 042313 (2006)

    Google Scholar 

  14. Georgiev, L.S.: Phys. Rev. B  74, 235112 (2006)

    Google Scholar 

  15. Dennis, E., Kitaev, A., Landahl, A., Preskill, J.: J. Math. Phys.  43, 4452 (2002)

    Google Scholar 

  16. Raussendorf, R., Harrington, J., Goyal, K.: New J. Phys.  9, 199 (2007)

    Google Scholar 

  17. Kitaev, A.: Ann. Phys.  303, 2 (2003)

    Google Scholar 

  18. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: Science 292, 472 (2001)

    Google Scholar 

  19. Mochon, C.: Phys. Rev. A  69, 032306 (2004)

    Google Scholar 

  20. Aguado, M., Brennen, G.K., Verstraete, F., Cirac, J.I.: Phys. Rev. Lett.  101, 260501; Aguado, M., Brennen, G.K., Cirac, J.I.: New J. Phys.  11, 053009 (2009)

    Google Scholar 

  21. Freedman, M., Nayak, C., Walker, K.: cond-mat/0512066 (2005)

    Google Scholar 

  22. Gottesman, D.: Phys. Rev. A  54, 1862 (1996)

    Google Scholar 

  23. Chuang, I.L., Nielsen, M.A.: Quantum Computation and Quantum Information, pp. 191–197. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  24. Wootton, J.R., Lahtinen, V., Doucot, B., Pachos, J.K.: arXiv:0908.0708 (2009)

    Google Scholar 

  25. Iblisdir, S., Perez-Garcia, D., Aguado, M., Pachos, J.: Phys. Rev. B  79, 134303 (2009); Iblisdir, S., Perez-Garcia, D., Aguado, M., Pachos, J.: arXiv:0812.4975 (2008)

    Google Scholar 

  26. Doucot, B., Ioffe, L.B., Vidal, J.: Phys. Rev. B  69, 214501 (2004)

    Google Scholar 

  27. Pachos, J.K., Wieczorek, W., Schmid, C., Kiesel, N., Pohlner, R., Weinfurter, H.: New J. Phys.  11, 083010 (2009)

    Google Scholar 

  28. Lu, C.-Y., Gao, W.-B., Gühne, O., Zhou, X.-Q., Chen, Z.-B., Pan, J.-W.: Phys. Rev. Lett.  102, 030502 (2009)

    Google Scholar 

  29. Micheli, A., Brennen, G.K., Zoller, P.: Nat. Phys.  2, 341–347 (2006)

    Google Scholar 

  30. Raussendorf, R., Briegel, H.J.: Phys. Rev. Lett.  86, 5188 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wootton, J.R., Lahtinen, V., Pachos, J.K. (2009). Universal Quantum Computation with a Non-Abelian Topological Memory. In: Childs, A., Mosca, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2009. Lecture Notes in Computer Science, vol 5906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10698-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10698-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10697-2

  • Online ISBN: 978-3-642-10698-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics